

Intelligent Command Generation for Flexible Systems

Joshua Vaughan

Dept. of Mechanical Engineering

Univ. of Louisiana at Lafayette

joshua.vaughan@louisiana.edu http://www.ucs.louisiana.edu/~jev9637/ @doc_vaughan

10-ton Bridge Crane

A Smaller Crane

A Smaller Crane

Motion Control

Goal: $Y = Y_D$

• G_P - Plant, the system to control

Motion Control

- G_P Plant, the system to control
- GFB Feedback controller

- G_P Plant, the system to control
- GFB Feedback controller
- G_{FF} Feedforward controller

- G_P Plant, the system to control
- GFB Feedback controller
- G_{FF} Feedforward controller
- G_{CG} Command generator

- G_P Plant, the system to control
- GFB Feedback controller
- G_{FF} Feedforward controller
- G_{CG} Command generator

Feedback Control

Pros

. . .

- Eliminate Y_D-Y errors
- Disturbance rejection

Cons

. . .

- Stability?
- Need sensors, etc.

5

Feedforward Control

Pros

- Faster motion
- Compensate for delays

Cons

- No disturbance rejection
- High actuator demands

6

Command Generation

7

Pros

- Simple implementation
 - No sensors needed
 - Full model not needed
- Human compatible

Cons

- No disturbance rejection
- Increases rise time

•

Options for GCG

- Plant/Model Inversion
- Traditional Filters
- Input Shaping

Input Shaping Process

- Shaper design:
 - Natural Freq.
 - Damping Ratio
- Slight increase in command duration

Convolution with Impulses

Implementation

Implementation

Vibration Equation

$$V(\omega,\zeta) = e^{-\zeta \omega t_n} \sqrt{[C(\omega,\zeta)]^2 + [S(\omega,\zeta)]^2}$$

$$C(\omega,\zeta) = \sum_{i=1}^{n} A_i e^{\zeta \omega t_i} \cos(\omega t_i \sqrt{1-\zeta^2})$$
$$S(\omega,\zeta) = \sum_{i=1}^{n} A_i e^{\zeta \omega t_i} \sin(\omega t_i \sqrt{1-\zeta^2})$$

 $V(\omega,\zeta)$ is the vibration excited by *n*-impulses.

$V(\omega,\zeta) \leq V_{tol} \quad \begin{array}{l} \text{Constraint is that} \\ \text{vibration less than V}_{\text{tol}} \end{array}$

All impulses sum to one

$$\sum A_i = 1, \quad i = 1, \dots, n$$

This ensures we reach our desired state.

All impulses sum to one

$$\sum A_i = 1, \quad i = 1, \dots, n$$

All impulses sum to one

$$\sum A_i = 1, \quad i = 1, \dots, n$$

All impulses sum to one

$$\sum A_i = 1, \quad i = 1, \dots, n$$

Specified Negative Amplitude (SNA)

 $0 < A_i \le 1$ when *i* is odd $A_i = -A_{max}$ when *i* is even

$$0 \le \sum_{i=1} A_i \le 1 \quad k = 1, \dots, n$$

Example Closed-Form Shapers

where

- au_d is the damped vibration period

-
$$K = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$$

Flexible Satellites at Tokyo Inst. of Tech.

Flexible Satellites at Tokyo Inst. of Tech.

Measuring Robustness

Insensitivity - the width of a Sensitivity curve where vibration remains under V_{tol}

Measuring Robustness

Insensitivity - the width of a Sensitivity curve where vibration remains under V_{tol}

The Extra-Insensitive (EI) Shaper

El Shaper Form – Undamped Systems

Undamped EI
$$\equiv \begin{bmatrix} A_i \\ t_i \end{bmatrix} = \begin{bmatrix} \frac{1+V_{tol}}{4} & \frac{1-V_{tol}}{2} \\ 0 & \frac{\pi}{\omega_n\sqrt{1-\zeta^2}} & \frac{\frac{1+V_{tol}}{4}}{\omega_n\sqrt{1-\zeta^2}} \end{bmatrix}$$

• V_{tol} is the tolerable level of vibration, 0.05 = 5%

Specified Insensitivity (SI) Shapers

Must solve numerically, but can exactly tailor to the system requirements

Damping Matters, but less than Freq.

Shaper Duration v. Insensitivity

General Design Procedure

- Determine nominal system parameters
 - Dominant vibration frequencies (often only 1)
 - Associated damping ratios
- Determine variation of parameters
 - How must robustness is needed?
- Pick shaper or shapers to use
- Plug in frequency and damping to get:
 - Impulse amplitudes
 - Impulse times

Example Multi-mode Crane Oscillation

Convolved Two-Mode Shaper

 Design shaper for each mode, then convolve to get a shaper that eliminates both modes

Multi-mode SI Shapers

Solve for all modes simultaneously → faster shapers

Example Multi-mode Crane Oscillation

Cooperative Crane Control

Robot Jumping

- Replacing legs with compliant versions
- Concurrent design of the legs and jumping/running commands

Jumping

- Can be an efficient way to travel:
 - on rough terrain
 - in low gravity environments Astronauts used on

moon walks

A Simple Jumping Robot

- Rod mass m_l
- Actuator mass m_a
- Spring, *k*, and damper, *c* (not shown)

$$\ddot{x} = -\alpha \left(\frac{k}{m}x + \frac{c}{m}\dot{x}\right) - \frac{m_a}{m}\ddot{x}_a - g$$
$$\alpha = \begin{cases} 1, & x \le 0\\ 0, & \text{otherwise} \end{cases}$$

Goal: Design the motion of m_a to optimize jump height

Jumping Commands

Jumping Commands

Input-Shaped Jumping

Stutter Jumping

Jump Timing

Applied to a Hexapod

Thank You.

Contact Information

- Dr. Joshua Vaughan
- Rougeou 225
- joshua.vaughan@louisiana.edu
- http://www.ucs.louisiana.edu/~jev9637/
- @doc_vaughan
- http://github.com/docvaughan
- http://github.com/crawlab