Definition of Generalized Forces (Sec. 7.4.1)

Virtual week. Dore by 1901 forces over virtual deplocements

$$\mathcal{F}_{\mathcal{N}} = \sum_{n=1}^{\infty} \overline{f_n} \cdot \widehat{f_n}$$

FN = Z Fn. Fn Sin = surtual dyslocered of point where Fn octs

This is also equal to

M= 20,59; Q; = generalized forces

Including monerals, this expands to

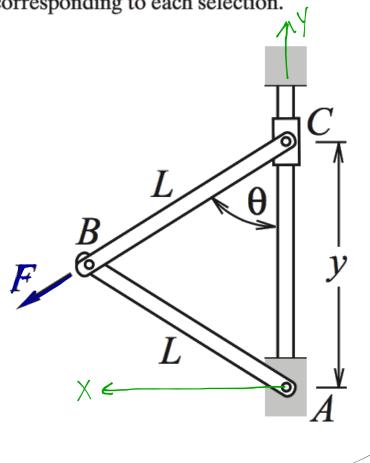
$$G_{N} = \sum_{n} F_{n} \cdot \widehat{J}_{n} + \sum_{k} F_{k} \cdot \widehat{J}_{k}$$
 $F_{k} = couples applied to system$

FOR = virtual rolation caused by TR

Generalized fora -> comparent of famou and tagues acting on a system that causes motion in the direction of a generalized coard.

Example 7.7

EXAMPLE 7.7 Force F acts parallel to link AB. Alternative choices for the generalized coordinate are the angle θ or the distance y. Determine the generalized force corresponding to each selection.



$$F = F \cdot F_B$$

$$F_{B|A} = L \sin \theta z + L \cos \theta z$$

$$F_{B|A} = V_A + (V_B)_{MR} + \overline{\omega} \times \overline{r}_{B|A} \qquad \omega = G_B = G_A$$

$$= -G_B \times (L \sin \theta z + L \cos \theta z)$$

$$\overline{V_B} = 2L \sin \theta z + L \cos \theta z$$

UB = [Leasez - Lsin O] é

$$SW = F \cdot f_B = \left(F_{SIN}\theta_7 - F_{COS}\theta_5\right) \cdot \left(\left[L_{COS}\theta_7 - L_{SIN}\theta_5\right]f_0\right)$$

$$= \left(\left[F_{L}_{SIN}\theta_{COS}\theta\right] \cdot \left[F_{L}_{COS}\theta_{SIN}\theta\right]\right)f_0$$

$$fW = Q_1 fg_1$$
 $g_1 = 0$ so $Q_1 = 2FLos 6 sin 0$

Conservative Forces (Sec. 7.4.3)

For conservative force with done = change in potential anergy

$$W_{1\rightarrow2} = U_1 - U_2$$
 $W_{1\rightarrow2} = walk from state 1 to state 2$ $U_1 = potential energy of state 1$

Uz = pokutial every at state 2

Polential energy depends on position and there, so wink as a function of you read in-line V (9;,-1-)

Find that the generalized force from consensation forces is:

$$(Q_1)_{\text{confit.}} = -\frac{9}{9} \cdot V(q_{i}, t)$$

But not all fire on consentine (of round) so total zar. for herenes

Severally upo to sexulter all

Somewhat the sexulter of the se not potential overy)

Lagrange's Equations (Sec. 7.5)

See book for derivation working from a single particle

 $\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_{1}}\right) - \frac{\partial T}{\partial \dot{q}_{2}} + \frac{\partial U}{\partial \dot{q}_{3}} = Q_{1}, \quad J=1,...,N$ T = total knetic energy V = total pokential energy

N: # of greatized coopinate)

· result in N eg of motion for N gar coords

In this form any constraint forces show up in Q;

For now, let's only look at holonomic systems (no contraint ference in Q;)

We con also write using the Lagrangia, ¿

L: T-V

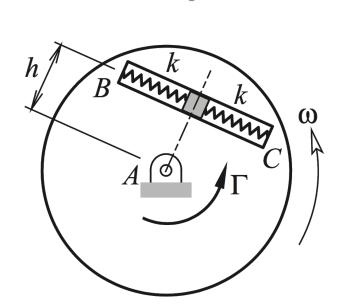
Since polential energy does not deposed on gi,

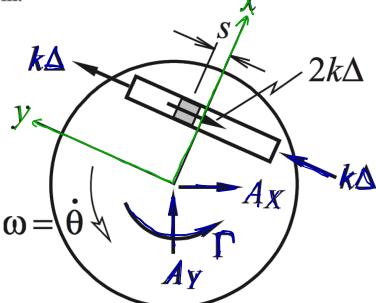
 $\frac{d}{dt}\left(\frac{dL}{d\dot{c}}\right) - \frac{d}{dt} = Q, \qquad j=1,2,...,N$

3 Be coreful with partial oro

Example 7.13

EXAMPLE 7.13 The table rotates in a horizontal plane about bearing A due to a torque Γ whose time dependence is known. The mass of the table is m_1 , and its radius of gyration about its center is κ . The slider, whose mass is m_2 , moves within groove BC under the restraint of two springs that are unstretched in the position shown. Derive the equations of motion for this system.





Q What should we choose as generalized cookstrates? 9= (0, s) S= displacement of mass from eq. length of springs

Q What gonopolized forces are those?

 Γ is only nonconscription force. It octs directly on Θ so $fW=\Gamma G\Theta \longrightarrow Q_1=\Gamma$ $Q_2=O$

Q: What is the knotic energy?

Q: What is (Izz) +1/10?

Q: Unot 15 Uz?

$$\overline{U}_{S} = \overline{U}_{A} + (\overline{U}_{S})_{MR} + \overline{U}_{X} \times \overline{U}_{S} + \overline{U}_{S} \times \overline{U}_{S} \times \overline{U}_{S} + \overline{U}_{S} \times \overline$$

Example 7.13 (cont.)

$$\int = \frac{1}{2} M R + \frac{1}{2} M \left[(50)^{3} + (51)(0)^{3} \right]$$

Q: What is the potential energy?

$$\nabla = \nabla^2 = \nabla \longrightarrow \int = \langle \nabla_2 \rangle$$

We defined s along the sping axil and at the deflection from spring og, so

Now apply Lagrange's Equation

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{3}}\right) - \frac{\partial L}{\partial \dot{q}_{3}} = Q_{3} \quad \dot{\gamma}_{=1}, \dots, M \qquad \longleftarrow \begin{array}{c} Here \quad M=2 \quad \text{and} \\ \bar{q}_{=}\left(\bigoplus_{i, s}\right) & 3 \text{ equations} \end{array}$$

$$\frac{\partial}{\partial L} \left(\frac{\partial L}{\partial \dot{Q}} \right) - \frac{\partial L}{\partial \dot{Q}} = Q, \quad \text{and} \quad \frac{\partial}{\partial L} \left(\frac{\partial \dot{Q}}{\partial \dot{Q}} \right) - \frac{\partial C}{\partial L} = Q_2$$

For q=0

$$\frac{\partial L}{\partial \dot{\theta}} = M \dot{R} \dot{\dot{\theta}} + \frac{1}{2} m \left[\partial \dot{S} \dot{\dot{\theta}} + 2 (\dot{s} + 1) \dot{\theta} \right] = M \dot{R} \dot{\dot{\theta}} + m \dot{S} \dot{\dot{\theta}} + m$$

$$\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \Theta}\right) = MR\Theta + MS\Theta + 2MS\Theta + MSS\Theta + MSS$$

$$\frac{9\theta}{9\Gamma} = 0$$

$$\left(MR + MS^{2} + MP\right) \ddot{\theta} + 2MSS \dot{\theta} + mls = \Gamma$$

For 92=5

$$\frac{d}{dt}\left(\frac{\partial L}{\partial s}\right) = MS + MJ\ddot{\theta}$$

$$\frac{\partial S}{\partial L} = MS\Theta - 2kS$$