Constraint Equations (Sec. 7.2.2)

solar! N generalized (cord), 9, = jth generalized coordinate

write the constraints on the system in functional form.

We can also constrain velocity (Inpa a angular):

$$f_{i} = \sum_{j=1}^{N} \left(\sum_{i=1}^{N} f_{i}(q_{i}, t) \right) \dot{q}_{i} + \sum_{j=1}^{N} f_{i}(q_{n}, t) = 0$$
 = velocity constraint

It is often easier to speafy velocity constraints than costing constraints (that are valid for all time)

Often, well write a man general form of the velocity constraint

Kon msight.

config constraint is algebraic transcendental eq. governing how amure at

volvery constraint is restriction on how a system con more given its current state, representing kinematically obmissible motion

Pfaffich fan: mult. by dt

Holonomic vs nonholonomic constraints

Pfathin form of velocity and ventus contraints only differ by a multi-factor.

This integrating factor (since conting is integral of sel.) can be a function of gen courd a time.

So, a given velocity constraint is desirable from a config constraint of:

 $g_{i}(q_{n},t) g_{i}(q_{n},t) = g_{i}(f_{i}(q_{n},t)) \qquad j=1,...,N$ $g_{i}(q_{n},t) g_{i}(q_{n},t) = g_{i}(q_{n},t) \qquad j=1,...,N$

where gi (q1,...qn,t) is the inlegating factor

If this is satisfied for all is —> constraint is holonomic else —> manholonomic

Note: 3/3; terms are a Jacobia set of holonomic constraints

So a; coefficients are called . Jacobia Constraint Matrix

(even who constraint is nonholonomic)

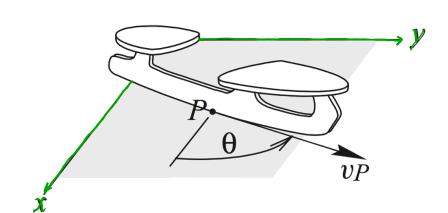
Note: Determining it a velocity constraint is helanamic is nentrivial

Holonomic vs nonholonomic constraints (cont.)

Nonholonomic constraints also dictate how many generalized courds we need to use:

Key poirt: S, generally front velocity constraints as nonholonomic

As on example consider the ke skate:



$$\dot{y} = U_{p} \cos\theta \qquad - U_{p} = \frac{\dot{x}_{p}}{\cos\theta} - \frac{\dot{x}_{p}}{\sin\theta} -$$

$$\dot{x}_{p}$$
 $\sin \theta - \dot{y}_{p}\cos \theta = 0$

Constraint means that

dyp = dxptan & Pfo-than fam of

$$Q_{11} = COS\Theta \qquad Q_{13} = -SIN\Theta \qquad \Rightarrow NON trolonomic$$

$$Q_{12} = O \qquad and \qquad D_1 = O \qquad \Rightarrow NON trolonomic$$

restricts now position of P

Configuration Space (Sec. 7.2.3)

Alternate way to describe position of system. Contrary uses it to briefly introduce the functions of variational methods. Plant red.

Evaluation of Virtual Displacements (Sec. 7.3)

Analytical Method (Sec. 7.3.1)

Place red. We will not cow in letter.

Kinematical Method (Sec. 7.3.2)

Recognice relationship between virtual and real diplacements

Use velocity formulation to determine virtual displacements

Incine orbitrory point A in a system It's velocity is

$$\overline{V}_{A} = \frac{\partial \overline{V}_{A}}{\partial t} = \sum_{i=1}^{M} \frac{\partial v_{A}}{\partial t_{i}} \hat{v}_{i} + \frac{\partial v_{A}}{\partial t}$$

So, the actual displacement of A over small time intend of is

$$\left[\overline{V}_{A} = \frac{\partial \overline{V}_{A}}{\partial t} = \sum_{i=1}^{\infty} \frac{\partial v_{A}}{\partial t_{i}} \dot{q}_{i} + \frac{\partial v_{A}}{\partial t}\right] dt \longrightarrow \left(\partial \overline{V}_{A} = \overline{V}_{A} dt + \sum_{i=1}^{\infty} \frac{\partial v_{A}}{\partial q_{i}} dq_{i} + \frac{\partial v_{A}}{\partial t} dt\right)$$

Use this to write unitial displacement

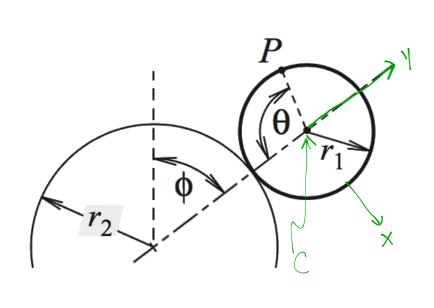
$$G_{L}^{\perp} = \sum_{i=1}^{\infty} \frac{g_{i}}{g_{i}} g_{i}$$
 — No of temple no time passes

If a system is time dependent, doup all terms that do not contain a generalized velocity

In other words, write the replace all the kims with

Example 7.5

EXAMPLE 7.5 The disk rolls without slipping over the stationary cylinder. The rotation ϕ of the line of centers from vertical is selected as the generalized coordinate for the disk. Point P contacted the cylinder when $\phi = 0$. Determine the virtual displacement of this point.



Because rolling (or long-thi are equial)
$$\Gamma_1 \Theta = \Gamma_2 \Phi \rightarrow \Theta = \Gamma_1 \Phi$$

Know us follows a circular path

$$\overline{U}_{c} = W \overline{K} \times \overline{\Gamma}_{c} = -\overline{\Gamma}_{W} \overline{C} = (\overline{\Gamma}_{1} + \overline{\Gamma}_{3}) \dot{\phi} \overline{C}$$

$$W = -\left(\frac{\Gamma_{1} + \Gamma_{3}}{\Gamma_{1}}\right) \dot{\phi}$$

$$\overline{p} = \overline{U}c + \overline{U}p \times \overline{p} + \overline{\omega} \times \overline{p} | c$$

$$\overline{p} | c = \overline{\Gamma} \left(-\sin\theta \overline{c} - \cos\theta \overline{c} \right) = \overline{\Gamma} \left[-\sin\left(\frac{c}{1}\phi\right) \overline{c} - \cos\left(\frac{c}{1}\phi\right) \overline{c} \right]$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} \right) \phi \overline{c} + \left[-\frac{1}{1} + \frac{1}{1} \phi \right] \left(\frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \sin\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} \right) \phi \overline{c} + \left[-\frac{1}{1} + \frac{1}{1} \phi \right] \left(\frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \sin\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} \right) \phi \overline{c} + \left[-\frac{1}{1} + \frac{1}{1} \phi \right] \left(\frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \sin\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} \right) \phi \overline{c} + \left[-\frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \sin\left(\frac{c}{1}\phi\right) \overline{c} \right]$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} \right) \phi \overline{c} + \left[-\frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} \right]$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} + \frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} - \frac{1}{1} \cos\left(\frac{c}{1}\phi\right) \overline{c} \right)$$

$$Vp = \left(\frac{1}{1} + \frac{1}{1} +$$

Please lock of Example 7.6. It nicely outlines some of the differences that come with the choice of generalized coordinates.