Impulse-Momentum Principles (Sec. 6.4.1)

Linear - Pa=Pi+ St & FAH

Pi = linear momentum at time to

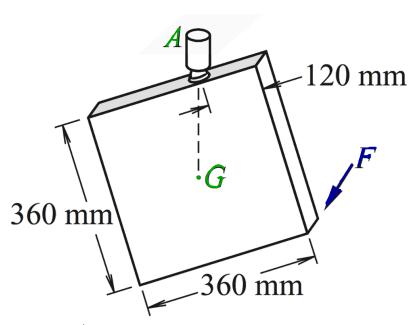
Rotational - (FlA) = (FlA) + St. SMA H (tlA): = Original momentum at time to

Both of these on vector equations

These relationships on really useful when impulses act on a body Assure the impulsion for monort is rocky router over a small true rouge, + - +

We can write the time range to analyze I'm superior to the impulse 1; < 1 < 1, + 1

Impolse


Find

Mounter Mounter right before impul N mpulsy

ond

Example 6.11

EXAMPLE 6.11 A 10-kg square plate suspended by ball-and-socket joint A is at rest when it is struck by a hammer. The impulsive force \bar{F} generated by the hammer is normal to the surface of the plate, and its average value during the 4-ms interval that it acts is 5000 N. Determine the angular velocity of the plate at the instant following the impact and the average reaction at the support.

Initial velocity - VI=0 Initial orgular valuaty - W=0

Find Gnalor velocity - W= Wx (+ Wy) + Wz k

Uduity of Con is than

$$\overline{U}_{G} = \overline{V}_{A} + (\overline{V}_{A})_{XYZ} + \overline{U}_{X} \times \overline{C}_{A}$$

$$= (U_{A} + U_{A} + U_{A} + U_{A} \times \overline{C}_{A}) \times (U_{A} + U_{A} + U_{A} \times \overline{C}_{A})$$

= -0.06wx k - 0.18wy k + 0.18wz + + 0.06wz = 0.06wz + 0.18wz + (-000dnx-0.18wy) k

F >> mg so ignore growty

180 mm

60 mm

Define Inortic propobant A

Sum memonts about A (ignore moments from reaction)

Find ongular momentum at time 2

Rol.

Impulse Man $\begin{array}{c}
(t|_{A})_{2} \leftarrow Got (H_{A})_{a} \text{ from originar values values of the 2} \\
\text{Impulse Man}
\end{array}$ Equals comparents from these

$$m(\bar{U}_{2}) = E\bar{F}$$
 at

 $E = Ax\bar{e} + Ay\bar{J} + (Az+F)\bar{K}$

Uso those to solve for Reaction forces

Q: What direction with Az be?

Same or F!

Chapter 7 - Introduction to Analytical Mechanics

Based in energy, rather than forces

Virtual Work (Sec. 7.1.1)

Requires introduction of virtual movement (virtual supplicaments and instations)

Unitual movement - infiniteismally small motion (occur in zono tru)

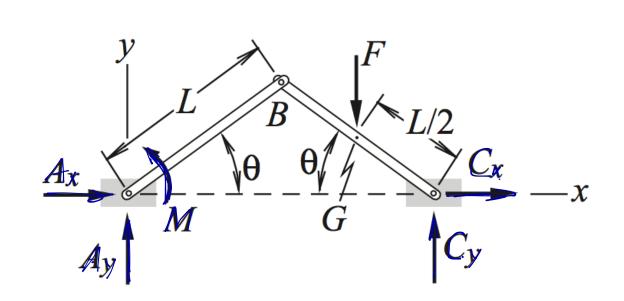
denote virtual oupplicament of P os STP

virtual introduction of O or STP

Virtual movement - infiniteismally small motion (occur in zono tru)

Denote virtual oupplicament of P os STP

virtual movement of point P is STP. STP


moment causing O is SMD-JO

Principle of Virtual Work

IN = $\leq F_s \cdot \delta r_s + \leq M_h \cdot \delta \theta_h = 0$ In static equil. this is the $\delta r_s = v_s r_s t_s d$ of point of application of f_s $\delta \theta_h = v_s r_s t_s d$ or which M_h ods $\delta r_s t_s d$ why how is this value. How an which mext were (mostly)

Virtual Work (cont.)

For virtual work, we can solved virtual movements that only makine the force, we're mikinether in.

This mourned causes 2 to charge. While the virtual relation os:

In thin cose, we won't to find Cx, but word to ownid A, A, and Cy

Choose virtual movement such that A is statusmy and C moves horsentally.

So, the virtual work by the movent M is MSO.

(No also need to know the work done by F and Cx

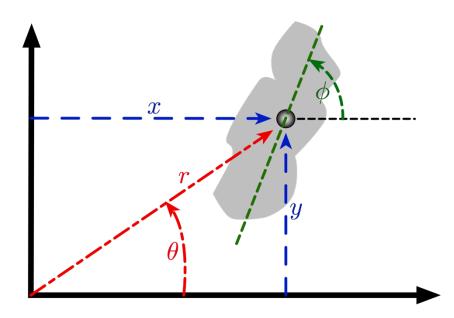
So, we need to find the virtual displacements of their points of application.

We can so this by finding their normal displacements.

 $\frac{1}{C|A} = \frac{3}{3}L\cos \theta = + \frac{1}{3}L\sin \theta = \frac{3}{3}L\cos \theta = -\frac{3}{3}L\sin \theta = \frac{3}{3}L\sin \theta = \frac{3}{3}L\cos \theta$

So, Mi = MAD + [Cxt. ficia] + [-FJ. figia] = 0 = still only looking at static case!!!

Con solu thin to Ino Cx.


Dynamic Virtual Work (Sec. 7.1.2)

Extension of previous section. Plans red.

Generalized Coordinates and Kinematics Constraints (Sec. 7.2)

Generalized coordinates - what is used to describe the orientation of the system?

Degrees-of-freedom - the <u>minimum</u> number of generalized coordinates to completely define the position of the system

A rigid budy in a plane has 3 DOF

Q: What are some choices Usually denoted as 9

(x, y, b) (r, p, p)

a Others?

$$\bigcirc$$
 What if its pinned at one and How many DOF? \longrightarrow 1 DOF, ϕ

$$2DOF if unconstrain - 2 constraints (pin limits x and y=0) = 1 DOF$$

We can choose a set of constrained generalized coords, but then need to include constraints in the og at motion. This is after undesirable.

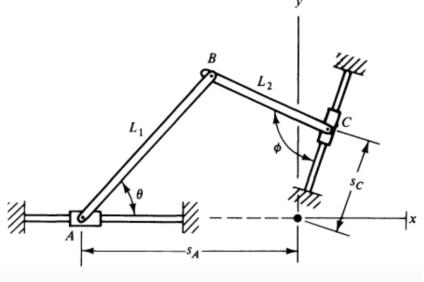


Figure 6.6 Generalized coordinates for a linkage.

(SA, Sc) would be a better choice

If # of garralized (cord) > # DOF

the governalized (coordination) are constrained

else

Unconstrained or independent