\qquad

Problem 1 - 40 Points

In Figure 1, a disk of radius R spins about link BC at a rate of $\dot{\phi}$. Link ABC rotates about axis Z at a constant rate, $\dot{\psi}$. The angle from link AB from vertical, θ, is also variable. The angle of the bend in the ABC linkage, β, is fixed.
a. Write the angular velocity and angular acceleration of the disk. For each, be sure to indicate how to resolve all the components into the same frame.
b. What is the velocity of point D ?
c. What is the acceleration of point D ?

Let's extend this

 problem into a Ch. 6 example by adding a few forces/torques and writing the equations of motion.

Figure 1: A Spinning disk on a Bent Linkage
a. Define ccuro fromes
$X \overline{Y Z}$ - fixed to $A B$, but \bar{X} olweys hovicental
$x^{\prime} y^{\prime} z^{\prime}$ - fixes to $A B$, with z^{\prime} along $A B$
$x y 2$ - fixed to $B C$, with 2 along $B C$
$\left.\left[\begin{array}{c}\bar{l}^{\prime} \\ \bar{J}^{\prime} \\ k^{\prime}\end{array}\right]=R_{\theta}\left[\begin{array}{c}\bar{I} \\ \bar{J} \\ \bar{K}\end{array}\right]: \left.\left[\begin{array}{ccc}c \theta & 0 & -s \theta \\ 0 & 1 & 0 \\ s \theta & 0 & c \theta\end{array}\right] \right\rvert\, \begin{array}{c}\bar{I} \\ \bar{J} \\ \bar{Z}\end{array}\right] \rightarrow R_{\theta}=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$
$\left|\begin{array}{c}j \\ i \\ j \\ k\end{array}\right|=R_{\beta}\left|\begin{array}{c}\tau^{\prime} \\ -j^{\prime} \\ k^{\prime}\end{array}\right|=\left[\begin{array}{ccc}c \beta & 0 & -s \beta \\ 0 & 1 & 0 \\ s \beta & 0 & c \beta\end{array} \left\lvert\,\left[\begin{array}{c}-1 \\ l^{\prime} \\ j^{\prime} \\ k^{\prime}\end{array}\right] \rightarrow R_{\beta}=\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]\right.\right.$

Problem 1 (cont.)
a.

$$
\begin{aligned}
& R_{\beta} R_{\theta}=\left[\begin{array}{ccc|ccc}
c \beta & 0 & -s \beta & c \theta & 0 & -s \theta \\
0 & 1 & 0 & 1 & 0 \\
s \beta & 0 & c \beta
\end{array}\right]=\left[\begin{array}{ccc}
c \beta \beta \theta-s \beta \beta \theta & 0 & -c \beta \beta \theta-s \beta \theta \\
0 & 1 & 0 \\
c \theta & 1 & c \theta
\end{array}\right] \\
& \text { so } \bar{k}=(\operatorname{s\beta c} \theta+c \beta s \theta) \bar{I}+(-s \beta s \theta+c \beta c \theta) \overline{\bar{K}} \\
& \overline{\text { waisk }}=\dot{\psi} \overline{\bar{S}}+\dot{\theta} \bar{J}+\dot{\phi} \bar{k}=\dot{\psi}+\dot{\theta} \bar{J}+R_{\beta} R_{\theta}\left[\begin{array}{l}
0 \\
0 \\
\dot{\phi}
\end{array}\right] \\
& \bar{w}_{\text {dusk }}=\dot{\phi}(\operatorname{s\beta c} \theta+c \beta s \theta) \bar{I}+\dot{\theta} \bar{J}+[\dot{\phi}(-s \beta s \theta+c \beta c \theta)+\dot{\psi}] \bar{\xi}
\end{aligned}
$$

$$
\begin{aligned}
& =\ddot{\theta} \bar{J}+\dot{\theta}\left(\bar{w}_{x / 2} \times \bar{J}\right)+\dot{\phi} \bar{k}+\dot{\phi}\left(\bar{w}_{\times 2 k} \times \bar{k}\right)
\end{aligned}
$$

where $\overline{w_{X I 2}}$ is congular volecity of $X I Z$ freve $-\overline{\omega_{X X Z}}=\dot{\psi} \bar{\xi}$
$\omega_{x \mid 2}$ is angules velcacty of $x y z$ freme - $\bar{\omega}_{x y 2}=\dot{\psi} \bar{K}+\dot{\theta} \overline{\bar{j}}$

$$
\begin{aligned}
& \overline{\alpha_{\text {disk }}}=\ddot{\theta} \bar{J}+\dot{\theta}(\dot{\psi} \overline{\mathrm{K}} \times \bar{J})+\dot{\phi} \bar{k}+\dot{\phi}((\dot{\psi} \bar{K}+\dot{\theta} \dot{\bar{J}}) \times \bar{k}] \\
& \bar{\alpha}_{\text {dusk }}=\ddot{\theta} \bar{J}+(-\dot{\theta} \dot{\psi} \overline{\bar{I}})+\dot{\phi} \bar{k}+\dot{\phi}[(\dot{\psi} \overline{\bar{E}}+\dot{\theta} \overline{\bar{J}}) \times \bar{k}] \leftarrow \text { see otwave for } \bar{k} \text { m temen } \\
& \text { ot } \bar{I} \text { and } \bar{X} \text { to }
\end{aligned}
$$ allew thil cross) parouct See the Juppter Noderock for the cumplete oxperiion

Problem 1 Extension
Write the equations of motion.
Q: How nam DOF?... so how may or of motion?

$$
3 \rightarrow \psi, \theta, \phi
$$

Q: Where should we sum moments about?
Use prat C. It's the Com of the dike aw will bet us ignave gravity in the moment ep.
So,

$$
\left.\begin{array}{rl}
\Sigma \bar{M}_{c} & =\dot{\bar{H}}_{c} \\
\Sigma \bar{M}_{c} & =\tau_{1} \bar{K}+\tau_{2} \bar{J}+M_{x} \bar{I}+\left(\bar{r}_{A l C} \times A_{x} \bar{I}+A_{2} \underline{X}\right) \\
& =\tau_{1} \bar{B}+\tau_{2} \bar{J}^{\prime}+M_{x} \bar{I}+\left(\bar{r}_{A / C} \times A_{x} \bar{I}+A_{2} Z\right.
\end{array}\right)
$$

Q: What from shul we use to wite this equation? EMbers Eq it vo uncle
If we use $x y 2$, then the axes cor principle. The other frames wail ow chile" "this frame." require manipulation of the wrotia properties.

So, wed need to do a cord troustomation on wale $+\bar{\alpha}_{\text {ls }}$ to $x y z$ and write $\Sigma \bar{M}_{c}$ in that from

Q: What about $\sum \bar{F}$
$\sum \bar{F}=m \bar{a}_{c} \longleftarrow$ we fowl \bar{a}_{c} in pert c of the problem

$$
\Sigma \bar{F}=A_{x} \bar{I}+\left(A_{2}-m g\right) \bar{K}
$$

\qquad

Problem 2-30 Points

Figure 2 shows an instantaneous view of a disk rotating at a rate ω_{2} about point Q . An ant is relaxing on the disk (ie. its location on the disk is fixed) at a distance R from its center. When, $\theta=0$, the ant reaches her topmost position. The center of the disk is located on the T-bar at a distance L from the axis about which the bar is spinning, Z. The rate of rotation of the T-bar is described by ω_{1}.
a. What is the velocity of the ant, \bar{v}_{A} ?
b. What is the acceleration of the ant, \bar{a}_{A} ?
c. What does the ant observe as the velocity and acceleration of point P , the top of the T-bar?

XYZ fixed with Z up
$x^{\prime} y^{\prime} z^{\prime}$ - fixes to T bo with
z^{\prime} up and x^{\prime} oblong T

Figure 2: An Ant Riding on a Spinning Disk on a T-bar
a. $\bar{v}_{A}=\bar{U}_{Q}+\bar{w}_{x, 12} \times \bar{r}_{\left.A\right|_{Q}}$

$$
\left.\bar{V}_{Q}=\omega_{1} \bar{k}^{\prime} \times L \bar{c}^{\prime}=L \omega_{1}\right\rangle^{\prime}
$$

So

$$
\left|\begin{array}{l}
\bar{i} \\
\bar{j} \\
\bar{k}
\end{array}\right|=\left\lvert\, \begin{array}{ccc|c}
c \theta & 0 & -s \theta \\
0 & 1 & 0 \\
s \theta & 0 & c \theta & \left.\begin{array}{c}
i^{\prime} \\
j^{\prime} \\
\bar{k}^{\prime}
\end{array}\right), ~
\end{array}\right.
$$

$$
\begin{array}{ll}
\bar{V}_{A}=\left(L \omega_{1} j^{\prime}\right)+\left(-\omega_{\partial} j^{\prime}+\omega, k^{\prime}\right) \times R \bar{k} & \frac{\bar{j}}{\bar{k}} \left\lvert\,=\left[\begin{array}{ccc}
0 & 1 & 0 \\
s \theta & 0 & c \theta
\end{array}\right.\right. \\
\bar{V}_{A}=\left(L_{1} J^{\prime}\right)+\left(-\omega_{2} j^{-1}+\omega_{1} k^{\prime}\right) \times\left(R \sin \theta c^{-1}+R \cos \theta k^{\prime}\right) \leftarrow \bar{k}: s \theta^{\prime}+c \theta \bar{k}^{\prime}
\end{array}
$$

Problem 2 Extension
What is the angular momentum of the disk?
Q: Where should we calculate this?
Let's use pout Q, it's the Com. We can also see that aye ore principb axes for the disk.

$$
\begin{aligned}
& \text { So } \quad \bar{H}_{Q}=I \bar{\omega}=\left[\begin{array}{ccc}
I_{\alpha<} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{22}
\end{array}\right] \bar{\omega}_{\text {duke }} \quad \text { we ned to unto this in } \\
& \text { the byz frame }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\omega} \text { disk }=\omega_{1}(-s \theta \tau+c \theta \bar{k})-\omega_{\partial}(\bar{J}) \\
& =-\omega_{1} \sin \theta \bar{c}-\omega_{\bar{\jmath}}+\omega_{1} \cos \theta \bar{k}
\end{aligned}
$$

So

$$
\bar{H}_{Q}=-I_{x x} \omega_{1} \sin \theta \tau-I_{y y} \omega_{2} \bar{\jmath}+I_{2 z} \omega_{1} \cos \theta \bar{k}
$$

Q: How would we get the equators of motion?
$\sum \bar{M}_{Q}: \overline{\vec{H}}_{Q} \quad$ and $\quad \sum \bar{F}=M \bar{a}_{Q} \quad \bar{a}_{Q} \leftarrow$ pure potation at robles L abut point 0 Trecognizivs this will simplify the problem

Example 6.11
EXAMPLE 6.11 A 10-kg square plate suspended by ball-and-socket joint A is at rest when it is struck by a hammer. The impulsive force \bar{F} generated by the hammer is normal to the surface of the plate, and its average value during the 4-ms interval that it acts is 5000 N . Determine the angular velocity of the plate at the instant following the impact and the average reaction at the support.
$F \gg$ ing so ignore gravity

Initial velocity - $v_{1}=0$
Initial angular velocity - $\omega_{1}=0$
Find angular velorixi $-\omega_{2}=\omega_{x} \bar{i}+\omega_{y} \bar{j}+\omega_{2} \bar{k}$
Velocity of Com is than:

$$
\begin{aligned}
& \bar{J}_{G}=\bar{X}_{A}^{0}+\left(\nu_{C}\right)_{X X R}^{0}+\bar{\omega} \times \bar{r}_{G / A} \quad \bar{G}_{G / A}=0.18 \bar{c}-0.06 \overline{\mathrm{~J}} \\
& =\left(\omega_{x} \bar{c}+\omega_{y} \bar{J}+\omega_{2} \bar{k}\right) \times(0.18 \bar{c}-0.06 \bar{J}) \\
& =-0.06 \omega_{x} \bar{k}-0.18 \omega_{y} \bar{k}+0.18 \omega_{z} \bar{\jmath}+0.06 \omega_{z} \bar{\imath}=0.06 \omega_{2} \bar{c}+0.18 \omega_{z} \bar{s}+\left(-006 \omega_{x}-0.18 \omega_{y}\right) \bar{k}
\end{aligned}
$$

Find angular momentum at tine 2

$$
\left.\begin{array}{rl}
m\left(\bar{V}_{2}\right) & =\sum \bar{F} \Delta t \\
\sum \bar{F} & =A_{x}+A_{4} \bar{J}+\left(A_{2}+F\right) \bar{k}
\end{array}\right\}
$$

Use there to solve for Reaction forces
Q What dreection with A_{2} he?
Same os \bar{F} !

