Example 5.8
This problem is from Advanced Engineering Dynamics by Jerry Ginsberg. It is basically
A thin homogeneous disk of mass m rolls without slipping on a horizontal plane such that the center A has a constant speed v as it follows a circular path of radius ρ. The angle of inclination of the axis relative to the vertical is a constant value θ. Derive an expression relating v to the other parameters.

Example 5.8

constant sped $V \rightarrow V=\rho \dot{\psi} \rightarrow \dot{\psi}=v / \rho$

At this instant: $\bar{k}=-\sin \theta \tau+\cos \theta \bar{k}$

$$
\begin{aligned}
& \bar{w}_{\text {ask }}=-\dot{\psi} \sin \theta \bar{\imath}+(\dot{\phi}+\dot{\psi} \cos \theta) \bar{k} \leftrightarrows \text { only valid of this instant, because is only for this instant } \\
& \bar{\alpha}_{\text {disk }}=\dot{\phi} \dot{\psi} \sin \theta \bar{\jmath}
\end{aligned}
$$

We con write \bar{U}_{A} bail on rotation rates (because of the polling coroditan)

$$
\begin{aligned}
& \bar{V}_{A}=\bar{W}_{C}^{0}+\bar{\omega} \times \bar{\omega}^{\circ} \times \bar{\Gamma}_{A \mid C}=\sqrt{j} \quad \overline{\sqrt{F}}_{A l C}=-R \bar{c} \\
& =[-\psi \sin \theta \bar{\imath}+(\phi+\dot{\psi} \cos \theta) k] \times[-R \bar{\imath}]=-R(\dot{\phi}+\dot{\psi} \cos \theta) \bar{\jmath}=v \bar{\jmath}
\end{aligned}
$$

Plug ϕ into wast and $\bar{\alpha}_{\text {alk }}$

$$
\begin{array}{r}
=\rho \dot{\psi} \rightarrow \dot{\phi}=-\left(\frac{\rho}{R}+\cos \theta\right) \dot{\psi} \leftarrow \begin{array}{l}
\text { how fast its spanning } \\
\text { depends on hew fast its }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \bar{\omega}_{\text {ax k }}=\dot{\psi}\left[-\sin \theta \bar{c}-\frac{\rho}{R} \bar{k}\right] \\
& \bar{\alpha}_{\text {ok }}=-\dot{\psi}^{2}\left[\frac{l}{R}+\cos \theta\right] \sin \theta \bar{\jmath}
\end{aligned}
$$

Use there to find \bar{H}_{A} and \dot{H}_{A} and sub into moment equations
Then, solve $\sum \bar{F}=m \bar{a}_{6}$ for remarking uncrown)

A servomotor maintains at a constant value the spin rate $\dot{\phi}$ at which the disk rotates relative to the pivoted shaft AB. The precession rate $\dot{\psi}$ about the vertical axis is also held constant by a torque $M(t)$. Derive the differential equation governing the nutation angle θ. Also derive an expression for M .

XI 2 fixed to vertical shaft $x y 2$ to disk with 2 along
notation axis with
origin fuad ot pin pint xi to disk with 2 along
notation axis with
orrin final ct pin pint xi to disk with 2 along
notation axis with
orrin final ct pin pint

Example 5.9

$$
\begin{aligned}
\bar{\omega}=\dot{\psi} \bar{k}+\dot{\theta} \dot{\jmath}+\dot{\phi} \bar{k} & \underbrace{\bar{\omega}=\dot{\psi} \bar{k}}_{\text {nutation of from }} \\
\bar{k}=\sin \theta \tau-\cos \theta \bar{k} &
\end{aligned}
$$

$$
\bar{\omega}=\left(\dot{\psi}_{\sin } \theta\right) \bar{\imath}+\dot{\theta}_{\jmath}+\left(\dot{\phi} \cdot \dot{\psi}_{\cos \theta}\right) \bar{k}
$$

$$
\omega^{\prime}=\dot{\psi}(\sin \theta \tau-\cos \theta \bar{k})
$$

$$
\begin{aligned}
\bar{\alpha} & =\ddot{\psi}^{2^{0}}+\psi \vec{k}^{0}+\ddot{\theta} \bar{j}+\dot{\theta} \dot{\bar{j}}+\ddot{\phi} \vec{k}+\dot{\phi} \dot{k} \\
& =\ddot{\theta} \bar{j}+\dot{\theta}\left(\omega^{\prime} \times \bar{J}\right)+\dot{\phi}(\bar{\omega} \times \vec{k})
\end{aligned}
$$

$$
=\ddot{\theta} \bar{j}+\dot{\theta}\left(\psi_{\sin \theta i}-\psi_{\cos \theta \bar{k}} \times \bar{j}\right)+\dot{\phi}\left[\left(\dot{\psi}_{\sin \theta)}+\dot{\theta} \dot{j}+\left(\dot{d}-\psi_{\cos \theta)}\right) \times \bar{k}\right]\right.
$$

$$
=\dot{\theta} \bar{j}+\dot{\theta}\left(\psi_{\sin } \theta \bar{k}+\psi \cos \theta \bar{c}\right)+\dot{\phi}[-\dot{\psi} \sin \theta \bar{j}+\dot{\theta} \bar{\tau}]
$$

$$
\bar{\alpha}=(\theta \dot{\psi} \cos \theta+\dot{\phi} \dot{\theta}) \bar{c}+(\ddot{\theta}-\dot{\phi} \dot{\psi} \sin \theta) \bar{\jmath}+(\theta \dot{\psi} \sin \theta) \bar{k}
$$

Sum moments about point A. (We an vi Ewers Eq since ape or pircepol axes)

$$
\begin{aligned}
& \sum M_{A x}=\Gamma_{x}=I_{x x} \alpha_{x}+\left(I_{y y}-I_{22}\right) \omega_{y} \omega_{2}-\text { Solve with } \Gamma_{x} \\
& \Sigma M_{A_{y}}=-n g L \sin \theta=I_{y y \alpha_{y}}+\left(I_{22}-I_{x x}\right) \omega_{x} \omega_{2} \rightarrow E_{9} \text { of Motion } \\
& \Sigma M_{A z}=\Gamma_{z}=I_{22} \alpha_{2}+\left(I_{x x}-I_{y y}\right) \omega_{x \omega_{y}}-\text { Solve for } \Gamma_{z}
\end{aligned}
$$

Bar $B C$ is pivoted from the end of the T-bar. The torque Γ is such that the system rotates about the vertical axis at the constant speed Ω. Derive the differential equation of motion for the angle of elevation θ.

Problem 5.22

$$
\begin{aligned}
& \bar{\omega}=\Omega k^{\prime}+\dot{\theta} \bar{\jmath} \\
& k^{\prime}=-\sin \theta \bar{\imath}+\cos \theta k^{\prime} \leftarrow-\theta \text { rotor oboe } y, y^{\prime} \\
& \bar{\omega}=\Omega(-\sin \theta \bar{\imath}+\cos \theta \bar{k})+\theta \bar{\jmath} \\
& \bar{\omega}=-\Omega \sin \theta \bar{\imath}+\dot{\theta}+\Omega \cos \theta \bar{k}
\end{aligned}
$$

Now write \bar{a}_{6}

$$
\bar{o}_{A}=-L \Omega^{2} \bar{\imath}^{\prime} \leftarrow \text { pure notion }
$$

$$
\overline{\sigma_{G} A}=\frac{L}{2} \bar{\tau}
$$

The bar of mass m is falling toward the horizontal surface. Friction is negligible. Derive differential equations of motion for the position coordinates ($x G, y G$) of the center of mass of the bar, and for the angle of inclination θ. Also obtain an expression for the contact force exerted by the ground on the bar in terms of $\mathrm{xG}, \mathrm{yG}, \theta$, and their derivatives.

Problem 5.29

$$
\begin{aligned}
& \text { title } y_{6} \text { (and doit) in teas of } \theta \\
& y_{6}=\frac{L}{\alpha} \sin \theta \quad \dot{Y}_{0}=\frac{L}{2} \dot{\theta} \cos \theta \\
& \ddot{y}_{6}=\frac{l}{2} \ddot{\theta} \cos \theta-\frac{L}{2} \dot{\theta}^{2} \sin \theta \\
& \text { so: } \bar{a}_{6}=\ddot{x}_{6} \bar{\tau}+\left(\frac{L}{\partial} \ddot{\theta} \operatorname{ras} \theta-\frac{L}{2} \theta^{2} \sin \theta\right) \bar{\jmath} \\
& \sum \bar{F}=(N \cdot m g) \bar{J}=m\left[\dot{X}_{6} \bar{c}+\left(\frac{c}{2} \theta \cos \theta-\frac{c}{2} \theta^{2} \sin \theta\right) \bar{J}\right] \\
& \sum F_{x}=0=m \ddot{x}_{6} \rightarrow \ddot{x}_{6}=0 \\
& \Sigma F_{y}=N-m g=\frac{L}{2} \ddot{\theta} \cos \theta \cdot \frac{L}{2} \ddot{\theta}^{2} \sin \theta \\
& N=\frac{L}{2} \theta \cos \theta \cdot \frac{L}{2} \theta^{2} \sin \theta+m g
\end{aligned}
$$

Sum moments about 6 - (planer, so all in \bar{k})

$$
\begin{aligned}
\sum \bar{M}_{G_{k}}= & \left(-\frac{L}{2} \cos \theta \bar{c}-\frac{L}{2} \sin \theta \theta_{j}\right) \times\left(N_{\bar{J}}\right)= \\
= & -N\left(\frac{L}{2} \cos \theta\right)=I_{22} \alpha_{2} \\
& I_{22} \theta=-N\left(\frac{L}{2} \cos \theta\right) \leftarrow \text { Sub } N \text { for above for "full solution }
\end{aligned}
$$

The $20-\mathrm{kg}$ semicylinder has an angular speed $\omega=10 \mathrm{rad} / \mathrm{s}$ in the position shown. The coefficient of static friction between the ground and the semicylinder is μ. Determine the minimum value of μ for which slipping between the semicylinder and the ground will not occur in this position. What is the corresponding angular acceleration of the semicylinder?

Problem 5.33

$$
\bar{\omega}=-\omega \bar{k} \quad \bar{\alpha}=-\omega \bar{k}
$$

If no slip; velocity of semicride confer

$$
v_{0}=R w \rightarrow \dot{v}_{0}=R i=\bar{a}_{0} \rightarrow \bar{a}_{0}=R i \bar{I}
$$

$$
=-\frac{4 R}{3 \pi}(\cos \theta \bar{I}-\sin \theta \bar{J})
$$

$$
\bar{a}_{6}=\bar{a}_{0} \times\left(\bar{g}_{0}\right)_{\times \times 2}^{0}+\bar{\alpha} \times \bar{x}_{010}+\omega \times\left(\bar{\omega} \times \bar{c}_{c_{10}}\right)+2 \omega \times\left(\bar{v}_{6} \times 0_{\times 12}^{0}\right.
$$

$$
=\bar{a}_{0}+\bar{\alpha} \times \bar{r}_{\theta \mid 0}+\bar{\omega} \times\left(\bar{\omega} \times \bar{c}_{0,0}\right)
$$

$$
=(R ن \bar{I})+\left[-\omega \bar{K} \times \frac{-4 R}{3 \pi}(\cos \theta \bar{I}-\sin \theta \bar{J})\right]+\left[-\omega \bar{K} \times\left(-\omega \bar{K} \times\left(-\frac{-i R}{3 \pi}(\cos \theta \bar{I}-\sin \theta \bar{J})\right)\right]\right.
$$

$$
=(-R \bar{\omega} \bar{I})+\left[-\frac{4 R}{3 \pi} \omega \cos \theta \overline{\bar{J}}+\frac{4 \mathrm{~L}}{3 \pi} \omega \sin \theta \overline{\bar{I}}\right]+\left[-\frac{4 R}{3 \pi} \omega^{2} \cos \theta \bar{I}+\frac{4 R}{3 \pi} \omega^{2} \sin \theta \overline{\bar{J}}\right]
$$

$$
=\left[-R i+\frac{4 \mathbb{R}}{3 \pi} \dot{\sin } \sin \theta-\frac{4 \mathbb{R}}{3 \pi} \omega \cos \theta\right] \overline{\bar{I}}+\left[-\frac{4 \mathbb{R}}{3 \pi} \omega \cos \theta+\frac{4 \mathbb{R}}{3 \pi} \omega^{2} \sin \theta\right] \overline{\bar{J}}
$$

$\sum \bar{F}=f \bar{I}+(N-$ mg $) J=m \bar{a}_{6} \longleftarrow$ equate I and J components to solve for $f \operatorname{and} N$ $\sum M_{G_{2}}=-N\left(\frac{4 R}{2 \pi} \cos \theta\right)+f\left(R-\frac{4 R}{7 \pi} \sin \theta\right)=I_{21} \alpha_{2} \longleftarrow \quad \min \mu=\frac{f}{N}$

Example 5.15 This problem is from Advanced Engineering Dynamics by Jerry Ginsberg. It is basically

The coin is rolling without slipping, but the angle θ at which the plane of the coin is inclined is not constant. Evaluate the kinetic energy of the disk in terms of θ, the precession rate $\dot{\psi}$, and spin rate \emptyset. Also, prove that the work done by the friction and normal forces is zero.

Example 5.15

$$
\begin{aligned}
& \bar{\omega}=\dot{\psi} \bar{k}-\theta_{j}^{\prime}+\dot{\phi} \bar{k}=(\dot{\psi} \sin \theta) \bar{c}-\dot{\theta} \bar{j}+\left(\psi^{\prime} \cos \theta+\dot{\phi}\right) \bar{k} \\
& \bar{V}_{c}=\omega x \bar{r}_{c \mid A}=R(\psi \cos \theta+\dot{\phi}) \bar{\jmath}+R \dot{\theta} \bar{k} \\
& \bar{H}_{c}=I_{x x} \omega_{x} \bar{l}+I_{y y} \omega_{y} \bar{J}+I_{22 \omega_{2}} \bar{k} \leftarrow \begin{array}{r}
n_{0} \text { pros } \\
\text { of marta }
\end{array} \\
& T=\frac{1}{2} m \bar{V}_{c} \cdot \bar{v}_{c}+\frac{1}{2} \bar{\omega} \cdot \bar{H}_{c}
\end{aligned}
$$

For the $2^{\text {no }}$ part of the problem:
Define \bar{F} os vector fore combining the Naval and friction faces)
The moment it create about C is then:

$$
\bar{M}=\bar{r}_{A k} \times \bar{F}
$$

Ans the work done by the reactions is then

$$
d \omega=\bar{F} \cdot \partial \bar{r}_{c}: \bar{M} \delta \bar{\theta} \quad \partial \bar{R}=\bar{U}_{c} d t=\delta \bar{\theta} \times \bar{c} A A \quad \text { and } \overline{d \theta}=\bar{w} d t
$$

So, $d W=\bar{F} \cdot\left(\overline{d \theta} \times \overline{S_{C A A}}\right)+\left(r_{A \mid C} \times \overline{\bar{F}}\right) \cdot \overline{d \theta}$

$$
=\bar{F} \cdot(\overline{\partial \theta} \times \bar{c} / A)-\bar{F}\left(\overline{\partial \theta} \times r_{c \mid A}\right)=0 \longleftarrow \text { Reactions do no work! }
$$

