Example

The radiator fan of an automobile engine whose crankshaft is aligned with the longitudinal axis is rotating at $1,000 \mathrm{rev} / \mathrm{min}$, clockwise as viewed from the front of the vehicle. The automobile is following a $60-\mathrm{m}$ radius left turn at a constant speed of $75 \mathrm{~km} / \mathrm{hr}$. Determine the angular velocity and angular acceleration of the fan.

for rotation rate $\rightarrow \omega_{2}=1000\left(\frac{2 \pi}{60}\right) \frac{500}{5}$
rotation role due to the arculcr path con be oetermina by its spend and the robins of corvuture.

$$
V=\left(75 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=75\left(\frac{1}{36}\right) \frac{\mathrm{m}}{\mathrm{~s}}
$$

axes xyz are fixed with y along the fan axis of rotation

$$
\bar{\omega}=\left(-\omega_{2} \backslash \bar{J}+\omega_{1} \bar{K} \rightarrow \omega_{1}=\frac{V}{R}\right.
$$

$$
w=-\omega_{2} J+\frac{v}{R} \bar{k}^{2}
$$

$$
\bar{k}=\bar{K}
$$

To find the accel:

$$
\begin{aligned}
& \text { both } \omega_{1} \text { and } \omega_{2} \text { are constant, so } \dot{v}_{1}=\dot{\omega}_{2}=0 \\
& \bar{\alpha}=\frac{d \bar{\omega}}{d t}=\frac{d}{d t}\left(-\omega_{2} \bar{J}+\omega_{1} \bar{K}\right)=\frac{d}{d t}\left(-\omega_{2}-\overline{)}\right)+\frac{d}{d t}\left(w_{2} \bar{K}\right) \quad \omega_{1}=0 \text { and } \dot{k}=0
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\alpha}=-\omega_{1}\left(-\omega_{2} \tau\right)=\omega_{1} \omega_{2} \bar{\iota}
\end{aligned}
$$

Example
Collar C slides relative to the curved rod at a constant speed u, while the rod rotates about the horizontal axis at the constant rate Ω. Determine the acceleration of the collar in terms of θ.

$$
\begin{aligned}
\bar{a}_{c} & =\bar{a}_{0}^{0}+\left(\bar{a}_{c}\right) \times y z^{2}+\bar{\alpha} \times \bar{R}_{c / 0}+\bar{\omega} \times\left(\bar{\omega} \times \bar{x}_{c / 0}\right)+2 \bar{\omega} \times\left(v_{c}\right) \times k z \\
& =\frac{u^{2}}{\bar{R}}(\sin \theta \bar{c}+\cos \theta \bar{\jmath})+\Omega \bar{c} \times(\Omega(R-R \cos \theta) \bar{k})+2 \Omega \mu \sin \theta \bar{k} \\
\overline{a_{c}} & =\frac{u^{2}}{R} \sin \theta \bar{c}+\left(\frac{\omega^{2}}{R} \cos \theta-R \Omega^{2}(1-\cos \theta)\right] \bar{\jmath}+2 \Omega \mu \sin \theta \bar{k}
\end{aligned}
$$

Example
In the position shown, cylinder A is moving to the right such that its center has a speed v. There is no slipping between the cylinder and bar BC, but there is slipping between the cylinder and the ground. Determine the angular velocity and angular acceleration of bar BC, and the velocity and acceleration of the cylinder at the point where it contacts the ground.

$$
\begin{aligned}
& \bar{V}_{A}=-V \bar{I} \\
& \bar{V}_{D}=V_{A}+\bar{\omega}_{A} y \bar{r}_{D A}=\bar{\omega}_{B C} \times \bar{r}_{D / C} \\
& \bar{r}_{D}=L \cos \theta \bar{I}+L \sin \theta \overline{\bar{J}} \\
& \overline{r_{D}}=-R \sin \theta \bar{I}+R \cos \theta \bar{J} \\
& L=R \cot \frac{\theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{U}_{D}=-V \bar{I}-\omega_{A} \bar{K} \times[(-R \sin \theta \bar{I}+R \cos \theta \bar{J})]=-v \bar{I}+R \omega_{A} \sin \theta \bar{I}-R \omega_{A} \cos \theta \bar{I}=\left(-v_{A}+R \omega_{A} \cos \theta\right) \bar{I}+R \omega_{A} \sin \theta \bar{J} \\
& \bar{v}_{D}=\omega_{B C} \bar{K} \times(L \cos \theta \bar{I}+L \sin \theta \overline{\bar{J}})=L \omega_{B C} \cos \theta \bar{J}-L \omega_{D C} \sin \theta \bar{I}
\end{aligned}
$$

Equate components in each dirotion:
I direction

$$
-V+R \omega_{A} \cos \theta=-L \omega_{g C} \sin \theta
$$

Solved using Simply

$$
w_{A}=\frac{V}{R} \cos \theta \text { and } w_{R C}=\frac{V}{L} \sin \theta
$$

Now, use $\bar{\omega}_{A}$ to find \bar{V}_{e} :

$$
\bar{V}_{E}=\bar{V}_{A}+\bar{w}_{A} \times \bar{r}_{E \mid A}=-V \bar{I}+\left(\frac{-V}{R} \cos \theta\right) \bar{K} \times-R \overline{\bar{J}}=-v I+-v \cos \theta \overline{\bar{I}} \rightarrow \bar{V}_{E}=-v(1+\cos \theta) \overline{\bar{I}}
$$

