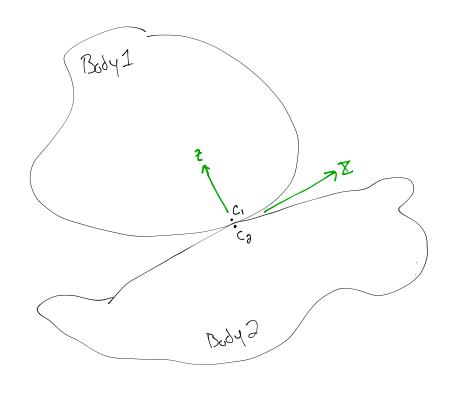
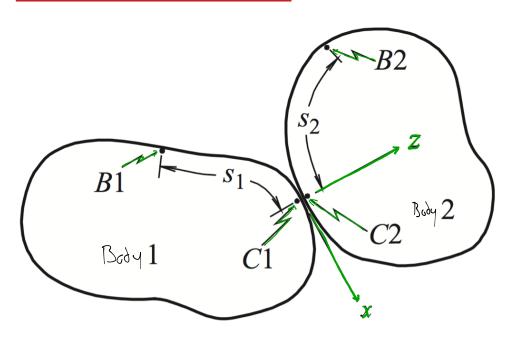
Rolling (Sec. 4.4)



C1-contact point as body I C2-contact point as body 2

The two bodies cannot perphate are another, so relocates of the points of contact must be equal along the contact axis

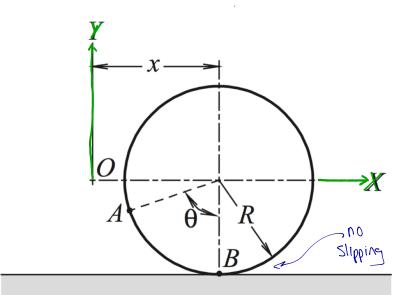
Rolling without Slipping



If there is no slipping, then the orc length along the two budies during with also he equal.

S1=S2 -> Orclength B1->C1 = Orclongth B3->C

Rolling without Slipping along the Ground



Q: If no slipping, what is the distance X?

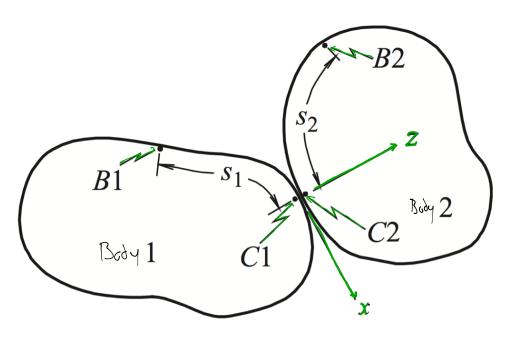
arclaryth of rolling 0 > r0

50,

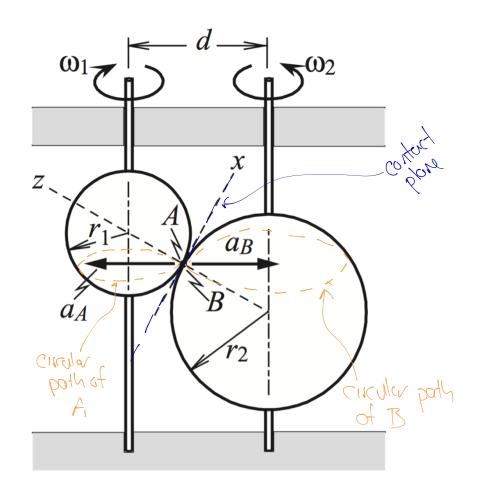
$$\overline{\Gamma_{A|O}} = (X - RSIN\Theta) \overline{1} + (-ROSO) \overline{3}$$
$$= (RO - RSING) \overline{1} + (-ROSO) \overline{3}$$

We can take docivatives of this to find JA and QA, but this orclongth nethed gets more difficult for "jarrel" willing

Rolling (cont.)



Consider:



In the general cose ...

Consider C; and B; to be very close

In the limit, the points on the two bodies hove equal velocity in all directions

Uci = Uca = in all function if no slipping

Q: What about the occil of the contact point?

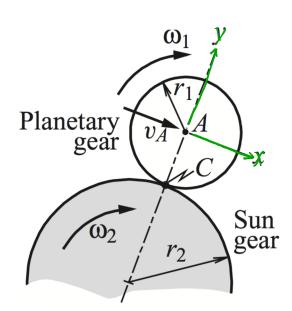
Not always I to contact plane (as plane-only analysis suggests)

· Accel of A on B on not I to contact plan.

A ond B follow circular parths, so occal is toward the contex of that parth

Q: So, how do re find the ocal of the contact points?

Use known constraints on the paths of the pants.



We know that A will follow a circular path of radius r_1+r_2 So, $\overline{V}_A = V_A \overline{c}$ and $\overline{O}_A = \overline{V}_A \overline{c} - \frac{V_A^2}{r_1 r_2} \overline{c}$

Because there is no slipping, we can relate UA to it by: $\overline{U}_A = \overline{U}_C + (-\omega_1 \overline{K}) \times \overline{\Gamma}_{A|C} = \overline{U}_C + \Gamma_1 \omega_1 \overline{C} = \overline{(\Gamma_1 \omega_1 + \Gamma_2 \omega_2)} \overline{C}$ $\overline{U}_C = \overline{U}_O + (-\omega_2 \overline{K}) \times \overline{C}_{|O|} = \overline{\Gamma}_O \omega_D \overline{C}$