Chapter 4 - Kinematics of Constrained Rigid Bodies

We found previously that

$$
\overline{a_{p}}=\bar{a}_{0}^{\prime}+\left(a_{p}\right)_{\times 1 / 2}+\bar{\alpha} \times \bar{r}_{p / 0^{\prime}}+\bar{\omega} \times\left(\bar{\omega} \times r_{p / 0^{\prime}}\right)+2 \bar{\omega} \times\left(\bar{u}_{p}\right) \times y z
$$

If pant P and pant O^{\prime} are an the sane rigid bock, to which the eye frame is fixed, then:

$$
\left(u_{p}\right)_{x y 2}=0 \quad \text { and } \quad\left(o_{p}\right)_{x, 2}=0
$$

So

$$
\begin{aligned}
& \bar{U}_{p}=\bar{U}_{0^{\prime}}+\bar{w} \times \bar{r}_{p / 0^{\prime}} \\
& \overline{a_{p}}=\bar{a}_{0}^{\prime}+\bar{\alpha} \times \overline{r_{p / 0^{\prime}}}+\bar{w} \times\left(\bar{\omega} \times \overline{r_{p}} k_{0^{\prime}}\right)
\end{aligned}
$$

Chaste's Theorem:

We can write the general motion of a rigid body by the translation of a point (with constant orientation), then a pure rotation about that point.

Key: Which point we choose is arbitrary

Eulerian Angles (Sec. 4.1)

Describe the rotation of a body by a:

1. precession - about a fixed Z axis
2. nutation - about the precessed y-axis, typically written y^{\prime}
3. spin - about the mutated z-axis, typically written $z^{\prime \prime}$

Figure 4.2 Precession.

Figure 4.3 Nutation.

Figure 4.4 Spin.

Let's write the notation matrices describing thee notations.
Precession - $x y z \rightarrow x^{\prime} y z^{\prime}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=R_{\psi}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { where } R_{x}=\left[\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\underline{\text { Nutation }-x^{\prime} y z^{\prime} \rightarrow x^{\prime \prime} y^{\prime \prime} z^{\prime \prime}}
$$

$$
\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=R_{\theta}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right] \quad \text { where } R_{\theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

$$
\underline{\text { Spin }-x^{\prime \prime} y_{2}^{\prime \prime} \rightarrow x y z}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R_{\phi}\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right] \quad \text { when } R_{\phi}=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Eulerian Angles (cont.)
So, the total transformation is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R_{\phi} R_{\theta} R_{\psi}\left[\begin{array}{l}
\bar{x} \\
\underline{1} \\
z
\end{array}\right]
$$

Figure 4.2. Definition of the Eulerian angles.

We con write angular velocity and angular arced. by adding rotation rates about the various axes.

$$
\bar{\omega}=\dot{\psi} \bar{k}+\dot{\theta} \bar{\jmath}^{\prime}+\dot{\phi} \bar{k}^{\prime \prime}=\dot{\psi} \bar{k}+\dot{\theta}_{\jmath^{\prime}}^{-1} \dot{\phi} \bar{k} \Leftarrow \bar{k}^{\prime \prime}=\bar{k}
$$

Write these in oral natation - $\bar{\omega}=\left[\begin{array}{l}\omega_{x} \\ \omega_{y} \\ \omega_{2}\end{array}\right]$
$\bar{\omega}=\left[\begin{array}{c}0 \\ 0 \\ \dot{\psi}\end{array}\right]_{\text {yd }}+\left[\begin{array}{l}0 \\ \dot{\theta} \\ 0\end{array}\right]_{x^{\prime} y^{\prime} z^{\prime}}+\left[\begin{array}{l}0 \\ 0 \\ \dot{\phi}\end{array}\right]_{x y 2} \longleftarrow$ Now, use the rotation matrices to resolve into o single cord system

$$
\bar{\omega}=\underbrace{R_{\phi} R_{\theta} R_{x}}\left[\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right]_{\underline{\overline{x \mid 2}}}+\underbrace{R_{\phi} R_{\theta}}\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]_{x y \dot{y}}+\left[\begin{array}{l}
0 \\
0 \\
\dot{\phi}
\end{array}\right]_{x \times 2}
$$

nutation fou XX 2 to 0 oration from $x y^{\prime} z^{\prime}$
$x y_{2}$ to $x / 2$

$$
\left.=\left[\begin{array}{c}
-\dot{\psi} \sin \theta \cos \phi \\
\psi \sin \theta \sin \phi \\
\dot{\psi} \cos \theta
\end{array}\right]_{x y 2}+\left[\begin{array}{c}
\theta \sin \phi \\
\theta \cos \phi \\
0
\end{array}\right]_{x y 2}+\left[\begin{array}{l}
0 \\
0 \\
\dot{\phi}
\end{array}\right]_{x y 2}=\left[\begin{array}{c}
-\dot{\psi} \sin \theta \cos \phi+\dot{\theta} \sin \phi \\
\dot{\psi} \sin \theta \sin \phi+\dot{\theta} \cos \phi \\
\psi \cos \theta+\dot{\phi}
\end{array}\right]_{x y 2}^{\leftarrow} \leftarrow \omega_{x} \leftarrow \omega_{1}\right\} \bar{\omega}=\omega_{x} \tau+\omega_{1}-1+\omega_{2} \bar{k}
$$

This is valid for all time, so $\bar{\alpha}=\frac{d \bar{u}}{d t}$

$$
\frac{d}{d t}()=\frac{\partial}{\partial t}(\cdot)+\bar{\omega} x() \rightarrow \bar{\alpha}=\left[\dot{\omega}_{x} \bar{\iota}+\dot{\nu}_{y} \bar{\jmath}+\dot{\omega}_{z} \bar{k}\right]+\left[\overline{y_{x}} \times \bar{\omega}\right]
$$

