Chapter 1 - Basic Considerations

Dr. Ginsberg begins with a quick review of vector math. We will not cover most of it, but you need to make sure you understand it.

Notation

$$\overline{F_{P,b}} = position of point P relative to point O$$

$$\overline{F_{P,b}} = \overline{F_{P,b}} + \overline{F_{P,h}}$$

$$\overline{F_{P,b}} = \overline{F_{P,b}} + \overline{F_{P,h}} + \overline{F_{P,h}}$$

$$\overline{F_{P,b}} = \overline{F_{P,b}} + \overline{F_{P,h}} +$$

Newton's Laws

Energy and Momentum (Sec. 1.2.3)

Just integrals of Nowlais 2nd Low

Useful when how the force varies as a function of particle position is known (we know $\leq \overline{F}(\overline{r})$

Write the displacement of a particle in time
$$\Delta t$$
 as
 $\Delta T = T(++\Delta t) - T(t)$

Shrink at > dt => Ar -> dr

Now, take the dot product of this with 2nd Low

$$\left(\underbrace{z\overline{F}}_{=} m\overline{a} \right) \cdot d\overline{r} \longrightarrow \underbrace{z\overline{F}}_{+} d\overline{r} = m\overline{a} \cdot d\overline{r}$$

$$\underbrace{z\overline{F}}_{+} d\overline{r} = m\left(\frac{d\overline{v}}{d\overline{r}}\right) \cdot \left(\overline{v}d\overline{r}\right) e^{-d\overline{r}} d\overline{r} \cdot \overline{v}d\overline{r}$$

$$\underbrace{z\overline{F}}_{+} d\overline{r} = \lim_{z \to \infty} \left[\frac{d}{d\overline{r}} \left(\overline{v} \cdot \overline{v}\right) \right] e^{-d\overline{v}} e^{-\overline{v}} = \overline{v} \cdot \frac{d\overline{v}}{d\overline{r}}$$

Taking the path integral;

$$\int_{1}^{2} \leq \overline{F} \cdot d\overline{r} = \frac{1}{2}m(\overline{v}_{0} \cdot \overline{v}_{0}) - \frac{1}{2}m(\overline{v}_{1} \cdot \overline{v}_{0}) = 1 = starting point$$

 $2 = evolus point$

 $\frac{\text{Kinetic Energy}}{T: \frac{1}{2}m(\overline{v}\cdot\overline{v}):\frac{1}{2}m|\overline{v}|^{2}}$

Then the Work done to move a particle from
$$1 \rightarrow 2$$
 is
 $W_{1\rightarrow 2} = \frac{5}{2} \neq \overline{F(r)} \cdot d\overline{r}$ or $T_2 = T_1 + W_{1\rightarrow 2}$ Work-energy Priciple

Energy and Momentum (cont.)

Now, let's cansider the case when we know
$$\xi F(t)$$
 not $\xi F(t)$
How two charges
with twy
Simply integrate Newton's $2^{n^{6}}$ Low with rapped to time (after multilly by dt)
 $\xi \overline{F} = m\overline{a} \longrightarrow \xi \overline{F} dt = madt \longrightarrow \xi \overline{F} dt = m \frac{d\overline{v}}{dt} dt \longrightarrow \xi \overline{F} dt = nd\overline{v}$
 $\int_{t_{1}}^{t_{2}} \xi \overline{F} dt = \int_{t_{1}}^{t_{2}} md\overline{v} = m(\overline{v}_{2} - \overline{v}_{1})$
 $velocity dt$ velocity of t_{1}
Linear Momentum (of a particle)
 $\overline{F} = m\overline{v}$

So, we can write

$$\overline{P_2} = \overline{P_1} + \int_{t_1}^{t_2} \leq \overline{F} dt$$
 Linear Impulse-momentum Principle
Note:
. This is a vector equation (really 3 comparents)
. Rore to know all comparents of $\leq \overline{F}$ for all try

· Instead, after use this for impulsive forces (high amp, short duration) < Ex.) collisions

Energy and Momentum (cont.)

Let's look at the 2nd Low's relationship to moments ZÃO = FPIO X ZF E - This will always werk for Cakulating moments Su $= \overline{c_{p|0}} \times \left(M \frac{d\overline{v}}{dt} \right)$ $\leq \overline{M}_0 = \overline{\Gamma}_{P/0} \times \left(m \frac{d\overline{v}}{dt} \right)$) bring at out front. Need to add and term to maintain som equation : dt [Tpo x MU] - dt x MU This is $\overline{V} \times M\overline{V} \equiv O \leftarrow dlugs O$ ≤ 0 SMO - dt FRAXMU Angular Momentum (olso rovert of novertur) Ho = FP/0 × MV So ZMD = di Ho = Ho conveill use this way more than this Integrate our ti->to $(\overline{H}_{0})_{\partial} = (H_{0})_{1} + \int_{1}^{2} \Xi \overline{M}_{0} dt$ *Angular Impulse-momentum Principle*

Chapter 2 - Particle Kinematics

Path Variables (Sec 2.1) - Also called intrinsic rowdinates Topo = T(s) and s(t) -S = "backward" along path -S = "backward" along path of time, because poth ~ Known Q: What's the velocity of point P? $\overline{U} = \frac{d\overline{r}}{d\overline{t}} = \frac{d\overline{r}}{d\overline{s}} \frac{d\overline{s}}{d\overline{t}} = \frac{s}{s} \frac{d\overline{r}}{d\overline{s}}$ determined by the position dependence on path Q: What about acceleration of P? $\overline{a} = \frac{d\overline{u}}{dt} = \frac{d}{dt} \left(\frac{d\overline{r}}{ds} \right) = \frac{d\overline{r}}{ds} + \frac{d\overline{r}}{ds} + \frac{d\overline{r}}{ds} = \frac{d\overline{r}}{ds} + \frac{d\overline{r}}{ds}$ Another property of the path Look at a straight line in direction \overline{e} , so \overline{f} p $\overline{F}_{16} = s\overline{e}$, $d\overline{s} = \overline{e}$ $\overline{e}s$ direction is constant, so $d\overline{s}^2 = 0$ $\overline{ds} = 0$ only aligned here 5k E = const in this public Not generally true.

Tangent and Normal Components (Sec. 2.1.1)

Define is as the diriction tangent to the path of any point days if

$$\overline{e_1} = \frac{2}{35} = -\frac{1}{35}$$
 from the pathor equation.
 $\frac{2}{35}\overline{e_2} = \frac{1}{35}$
 $\overline{e_1}$ what is the relationship of directions is and $\frac{1}{35}\overline{e_1}$.
 $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$
 $\overline{e_1} = \frac{1}{35}$ $\overline{e_1} = \frac{1}{35}$
 $\overline{e_2}$ what is the relationship of directions is and $\frac{1}{35}\overline{e_1}$.
 $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$
 $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ reacted to sade $\overline{e_1}$ to a unit water-
 $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$
So, or this to define the normal direction
 $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} = \frac{1}{35}$ $\overline{e_1} = \frac{1}{35}$ $\overline{e_2} =$

Tangent and Normal Components (cont.)

We can use Neutrini 2nd low with those coords
$$\leftarrow$$
 key point: We can pick the coords $\leq \overline{F} = M\overline{a} \subset Oll components must be equal so $choice (ar some co tot of choice (ar some co tot of work).$
 $\leq \overline{F} = M\left[\overline{v}\overline{e}_{1} + \frac{v^{2}}{p}\overline{e}_{n}\right]$
 $\leq \overline{F}_{1} = \leq \overline{F} \cdot \overline{e}_{1} = m\overline{v}^{2} \subset torgential$
 $\leq \overline{F}_{n} = \leq \overline{F} \cdot \overline{e}_{n} = m\frac{v^{2}}{p} \subset rormal$ $choice in these directions will $\leq \overline{F}_{n} = \leq \overline{F} \cdot \overline{e}_{n} = m\frac{v^{2}}{p} \subset rormal$ $choice in these directions will $\leq \overline{F}_{1} = \leq \overline{F} \cdot \overline{e}_{1} = 0$ \subset binormal $choice in the poth$$$$

Review Sections 2.1.2 and 2.1.3 on your own for now. We may return to them later.