Repeated and Zero Frequencies (Sec. 4.14)
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Q: What do you notice about these equations?

They're decoupled!!! <-- This means that *and &are normal coordinates.
(We also called these modal coordinates)

Q: What does this mean?

Vibration in one mode is purely in x. The other mode is purely in 5.
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Q: What happens if the two eigenvalues (natural freq.) are equal?
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Repeated and Zero Frequencies (cont.)

Q: What does this mean physically?

Any excitation will cause the system to oscillate at same frequency!

Q: So, how should we choose the eigenvectors for repeated
eigenvalues?

Choose them independent of one another (and other non-
repeated eigenvalue/eigenvector pairs)
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Zero Frequency?
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This is called the rigid-body mode, because the system behaves like a
rigid body (like k=infinity).

Q: Do you expect this system to have a rigid-body mode?

Yes. Displace the pendulums
identically and it will remain in the

new location (There is no restoring
force.).




