
MCHE 485: Mechanical Vibrations
Spring 2020 – Final Exam
Due: 11:59pm, Tuesday, May 5

Name: ULID:

Directions: Complete the attached problems, making sure to clearly indicate your answer,
show your work, and list any assumptions that you have made (with justifica-
tion for them, if necessary). If you need extra space for any question, you may
use additional sheets of paper.

You may use books, notes, problem solutions that I’ve posted, etc. However,
you may not use the help of others, and you may not help others. Asking
questions on Internet forums is also not allowed. Please sign in the Academic
Honestly section of this page to certify that you have followed these rules.
Exams without a signature will be not be accepted.

Submission: To submit this exam, before 11:59pm on Tuesday, May 5, 2020, send an email:

• to joshua.vaughan@louisiana.edu

• with subject line ULID-MCHE485-Final where the ULID is your ULID and
• with your solutions attached as a single PDF file with filename
ULID-MCHE485-Final.pdf, where ULID is your ULID.

Submissions with incorrect filenames or submitted as multiple images/PDFs
will be rejected, and you will be asked to resubmit them.

Work submitted after 11:59pm will receive a penalty at the rate of 10 points
per half-hour.

Academic Honesty:

An essential rule in every class of the University is that all work for which a
student will receive a grade or credit be entirely his or her own or be properly
documented to indicate sources. When a student does not follow this rule,
s/he is dishonest and s/he defeats the purpose of the course and undermines
the goals of the University.

By signing below, I certify that I have neither given nor received help on this
exam:

mailto:joshua.vaughan@louisiana.edu
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Problem 1 – 30 Points
The system in Figure 1 is a rigid bar of mass m and length l. It is connected to ground
via a spring, k, and viscous damper, c, at a distance a from the perfect pin about which it
rotates. The spring is in equilibrium when θ = 0. There is a pure torque, τ , acting on the
bar. Gravity also acts on the system.

a. Write the equations of motion for this system.

b. Write the linearized equations of motion for this system.

c. What is the natural frequency?

d. What is the damping ratio?

e. Assuming τ(t) = 0, write the response, θ(t), to initial conditions θ(0) = θ0 and θ̇(0) = 0.

f. Plot the response, θ(t), to the same initial conditions for damping ratios of ζ = 0.0,
ζ = 0.2, and ζ = 0.7. Be sure to clearly label the axes, indicate any important features
of the responses, and differentiate between the responses.

g. Now, assume a harmonic input in τ(t). Write the transfer function from the amplitude
of the input to the amplitude of the output.

h. Again assuming that τ(t) is a pure harmonic input, sketch the approximate frequency
response for damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label
the axes and differentiate between the responses. Also indicate:

i. Magnitude and phase as ω approaches 0.

ii. Magnitude and phase as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.
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Figure 1: A Pendulum with Spring and Damper



MCHE 485 – Final Exam – May 5, 2020 ULID:

Problem 2 – 20 Points
The system in Figure 2 consists of mass, m, connected to ground through a two springs,
both of spring constant k, and a damper, c. A force, f(t), acts on the system.

a. Write the equations of motion for this system.

b. What is the natural frequency?

c. What is the damping ratio?

d. Assuming f(t) = 0, sketch the response to initial conditions x(0) = x0 and ẋ(0) = −ẋ0

for damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label the
axes, indicate any important features of the responses, and differentiate between the
responses.

e. Assuming f(t) = f̄ sin(ωt), write the transfer function from the amplitude of the force,
f̄ , to the amplitude of the response.

f. The forcing function was determined to not be a pure harmonic. However, a Fourier
Analysis revealed that it could be adequately approximated as a linear combination of
two pure harmonics, such that:

f(t) ≈ f̄1 sin(ω1t) + f̄2 sin(ω2t)

where neither of the input frequencies match the natural frequency of the system
(ω1 6= ω2 6= ωn). Write the time response, x(t), to this approximation of the input.
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Figure 2: A Forced Mass-spring-damper System
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Problem 3 – 30 Points
The model in Figure 3 is a model for a single-link robotic arm interacting with an object.
The arm is modeled modeled as link of length l with mass m1. Its angle is represented by θ.
Pure torque τ drives the rotation. The object being manipulated is modeled as a mass, m2,
constrained to move on a frictionless surface. Its interaction with the arm is modeled via a
spring, k, and a damper, c, attached between the two.

a. Write the equations of motion for this model in matrix form.

b. Assuming there is no damping (c = 0), set up and explain the solution procedure to
find the natural frequencies and mode shapes. You do not need to solve the complete
problem, but all necessary information and steps must be clearly defined.

c. Do you expect there to be a rigid-body mode? Why or why not?

d. For a given set of parameters, the natural frequencies and mode shapes were found to
be:

ω1 = 0.00 rad/s and X1 = [5.00 0.50]T

ω2 = 6.28 rad/s and X2 = [7.07 − 7.07]T

Assuming that these are correct, plot (on separate sets of properly labeled axes) the
approximate time responses, θ(t) and x(t), to the initial conditions:

i. θ(0) = θ0, x(0) = 0, and all initial velocities are zero.

ii. θ(0) = x(0) = 0, θ̇(0) = θ̇0, and ẋ(0) = −0.1θ̇ + ε, where ε is a small positive
number.

e. Now, c 6= 0. Will the mode shapes change? Why or why not?

f. Set up and explain the solution procedure to find the natural frequencies and mode
shapes for the damped case (c 6= 0). You do not need to solve the complete problem,
but all necessary information and steps must be clearly defined.

m2

m1

x
k
c

Figure 3: A Simple Robotic Arm Model
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Problem 4 – 20 Points
The Ragin’ Cajun Racing team recently got a set of lightweight, high-performance wheels for
their car. The complete tire-wheel assembly has mass m1. Unfortunately, someone forgot to
balance the new wheels. The imbalance can be approximated by a second mass, m2, offset
from center by eccentricity, e. The wheel is rotating at angular velocity of ω. The tire acts as
a parallel spring, k, and damper, c, between the wheel and the road, where the displacement
of that equivalent spring and damper can be approximated by the vertical motion of the
wheel, x.

a. Write the equations of motion describing the vertical motion of the wheel center, as
described by x.

b. Write the time response describing the vertical motion of the wheel, x(t).

c. Assuming the system is underdamped, sketch the approximate frequency response. for
damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label the axes and
differentiate between the responses. Also include:

i. Magnitude as ω approaches 0.

ii. Magnitude as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.

d. Write an expression describing the forces transmitted to the road. Hint: This can (and
should) be done in terms of the time response, x(t), you found above.

x

m1

m2

e The tire behaves 
like a parallel 
spring, k, and 
damper, c, 

between the wheel 
and the road

Figure 4: An Unbalanced Formula SAE Wheel
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Possibly Useful Equations

f̄ = mā

I0ᾱ =
∑

M̄0

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

e±iωt = cos(ωt)± i sin(ωt)

x(t) = aeiωnt + be−iωnt

x(t) = a cosωnt+ b sinωnt

x(t) = e−ζωnt [a cos(ωdt) + b sin(ωdt)]

x =
−b±

√
b2 − 4ac

2a∫
u dv = uv −

∫
v du

δocV = ∀
∑

x(t) =
ω2
nȳ

ω2
n − ω2

sin(ωt)

d

dt

(
δL

δq̇i

)
+
δRD

δq̇i
− δL

δqi
= Qi, i = 1, . . . , n

MẌ + CẊ +KX = F

det
(
K − ω2M

)
= 0

[
K − ω2M

]
X̄ = 0

2 + 2 = 2× 2 = 22 = 0b0100 = 0x2

i ≡
√
−1

x(t) =

∫ t

0

f(τ)h(t− τ)dτ

x(t) =

∫ t

0

f(t− τ)h(τ)dτ

f(t) =
∞∑
n=0

an cos(nω0t) +
∞∑
n=1

bn sin(nω0t)

an =
ω0

π

∫ 2π
ω0

0

f(t) cos(nω0t)dt

bn =
ω0

π

∫ 2π
ω0

0

f(t) sin(nω0t)dt

a0 =
ω0

2π

∫ 2π
ω0

0

f(t)dt

V (ω, ζ) = e−ζωtn
√

[C(ω, ζ)]2 + [S(ω, ζ)]2

X̃i =
1√

XT
i MXi

Xi[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
x(t) = c+ e−ζωnt [a cos(ωdt) + b sin(ωdt)]

σ =
1

N
ln

(
x(0)

x(Ntp)

)
σ = ln

(
x(0)

x(tp)

)
ζ =

σ√
4π2 + σ2

ζ =
σ

2π

ωp = ωn
√

1− 2ζ2

ζ ≈ δh
2ωn

E = mc2

A =

[
0 −K
−K −C

]
B =

[
−K 0

0 M

]
[
UTMU

]
Ḧ +

[
UTKU

]
H = UTF cosωt
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Possibly Useful Equations

x(t) = −
(2ζωωn) f̄

m

(ω2
n − ω2)2 + (2ζωωn)2

cosωt+
(ω2

n − ω) f̄
m

(ω2
n − ω2)2 + (2ζωωn)2

sinωt

=

[
f̄

m

1√
(ω2

n − ω2)2 + (2ζωωn)2

]
cos (ωt− φ), where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

g(ω) =

√
ω4
n + (2ζωωn)2

(ω2
n − ω2)2 + (2ζωωn)2

eiφ, where

φ = φ1 − φ2, where φ1 = tan−1

(
2ζω

ωn

)
and φ2 = tan−1

(
2ζωωn
ω2
n − ω2

)

g(Ω) =

√
1 + (2ζΩ)2

(1− Ω2)2 + (2ζΩ)2
eiφ, where

φ = tan−1 (2ζΩ)− tan−1

(
2ζΩ

1− Ω2

)

g(ω) =
1

m
√

(ω2
n − ω2)2 + (2ζωωn)2

e−iφ, where

φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβω2√

(ω2
n − ω2)2 + (2ζωωn)2

cos(ωt− φ),

where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβΩ2√

(1− Ω2)2 + (2ζΩ)2
cos(ωt− φ), where

φ = tan−1

(
2ζΩ

1− Ω2

)


