
MCHE 485: Mechanical Vibrations
Spring 2019 – Final Exam

Friday, May 10

Name: ULID:

Directions: Complete the attached problems making sure to clearly indicate your answer,
show your work, and list any assumptions that you have made (with justifica-
tion for them, if necessary). If you need extra space for any question, you may
attach additional sheets of paper, which will be provided to you. No calculators
are allowed.

Academic Honesty (just a reminder):

An essential rule in every class of the University is that all work for which a
student will receive a grade or credit be entirely his or her own or be properly
documented to indicate sources. When a student does not follow this rule,
s/he is dishonest and s/he defeats the purpose of the course and undermines
the goals of the University.
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Problem 1 – 30 Points
The system in Figure 1 is a simple model of a vehicle suspension system. It consists of a
mass, m, connected to a frictionless pin via a massless, rigid bar of length l. The tire is
modeled as a connection to the road input, y, via a spring, kt, and viscous damper, ct. A
spring, k, and damper, c, are connected between the bar at point A and ground at point B.
The spring is in equilibrium when θ = 0.

a. Write the equations of motion for this system. (Hint: Using the law of cosines, the
distance between points A and B is defined by |r̄B/A|2 = a2 + b2 − 2ab sin θ.)

b. Write the linearized equations of motion for this system.

c. What is the natural frequency?

d. What is the damping ratio?

e. Assume y(t) = 0 (i.e. it acts like another ground connection with respect to the mass).
Write the response, θ(t), to initial conditions θ(0) = 0 and θ̇(0) = θ̇0.

f. Plot the response, θ(t), to the same initial conditions for damping ratios of ζ = 0.0,
ζ = 0.2, and ζ = 0.7. Be sure to clearly label the axes, indicate any important features
of the responses, and differentiate between the responses.

g. Now, assume a harmonic input in y(t). Write the transfer function from the amplitude
of the input to the amplitude of the output.

h. Again assuming that y(t) is a pure harmonic input, sketch the approximate frequency
response for damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label
the axes and differentiate between the responses. Also indicate:

i. Magnitude and phase as ω approaches 0.

ii. Magnitude and phase as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.

m

Figure 1: A Simple Vehicle Suspension Model
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Problem 2 – 20 Points
The system in Figure 2 consists of mass, m, connected to ground through a massless, inflex-
ible link of length l. There is a spring, k, and damper, c, attached between the mass and
ground. A pure torque, τ(t), and gravity act on the system.

a. Write the equations of motion for this system.

b. What is the natural frequency?

c. What is the damping ratio?

d. Assuming τ(t) = 0, sketch the response to initial conditions θ(0) = −θ0 and θ̇(0) = 0
for damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label the
axes, indicate any important features of the responses, and differentiate between the
responses.

e. Assuming τ(t) = τ̄ eiωt, write the transfer function from the amplitude of the force, τ̄ ,
to the amplitude of the response.

f. The forcing function was determined to not be a pure harmonic. However, a Fourier
Analysis revealed that it could be adequately approximated as a linear combination of
two pure harmonics, such that:

τ(t) ≈ τ̄1 sin(ω1t) + τ̄2 sin(ω2t)

where neither of the input frequencies match the natural frequency of the system
(ω1 6= ω2 6= ωn). Write the time response, θ(t), to this approximation of the input.

g
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Figure 2: A Forced Pendulum
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Problem 3 – 30 Points
Figure 3 is a model for a machining process. The cutting forces on the system are modeled
via a spring, k, and a damper, c, attached between the endpoint and mass m2. To approx-
imate the deflection of the arm, it is divided into two links of identical length, l, and mass
m, connected via a torsional spring, kθ. The angles of the two links from horizontal are
represented by θ1 and θ2, respectively. A pure torque, τ , drives the rotation.

a. Write the equations of motion for this model in matrix form.

b. Assuming there is no damping (c = 0), set up and explain the solution procedure to
find the natural frequencies and mode shapes. You do not need to solve the complete
problem, but all necessary information and steps must be clearly defined.

c. Do you expect there to be a rigid-body mode? Why or why not?

d. For a given set of parameters, the natural frequencies and mode shapes were found to
be:
ω1 = 0.00 rad/s and X1 = [0.33 0.33 0.67]T

ω2 = 2.67 rad/s and X2 = [0.32 0.26 − 0.75]T

ω3 = 9.98 rad/s and X3 = [−0.89 1.35 − 0.02]T

Assuming that these are correct, plot (on separate sets of properly labeled axes) the
approximate time responses, θ1(t), θ2(t), and x(t), to the initial conditions:

i. θ1(0) = θ0, θ2(0) = θ0, x(0) = 2θ0, and all initial velocities are zero.

ii. θ1(0) = θ2(0) = x(0) = 0, θ̇1(0) = θ̇2(0) = θ̇0, and ẋ(0) = 2θ̇0 + ε, where ε is a
small positive number.

e. Now, c 6= 0. Will the mode shapes change? Why or why not?

f. Set up and explain the solution procedure to find the natural frequencies and mode
shapes for the damped case (c 6= 0). You do not need to solve the complete problem,
but all necessary information and steps must be clearly defined.

m

ck

m

mm

m2

x

Torsional 
spring, k 

Figure 3: A Simple Machining Process Model
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Problem 4 – 20 Points
The system in Figure 4 is a simple model of a wind turbine. It consists of a vertical beam with
mass, m1, connected to ground. The flexibility of the beam is approximately keq = EA/l,
where l is its length. Its damping coefficient is approximately ceq. The turbine blade is not
perfectly balanced. Its imbalance can be approximated by a second mass, m2, offset from
center by eccentricity, e. The blade rotating at a constant angular velocity of ω.

a. Write the equations of motion describing the horizontal motion of the top of beam m1,
as described by x.

b. Assuming the system is underdamped, sketch the approximate frequency response. for
damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label the axes and
differentiate between the responses. Also include:

i. Magnitude as ω approaches 0.

ii. Magnitude as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.

m2

m1

Figure 4: A Wind Turbine Model
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Possibly Useful Equations

f̄ = mā

I0ᾱ =
∑

M̄0

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

e±iωt = cos(ωt)± i sin(ωt)

x(t) = aeiωnt + be−iωnt

x(t) = a cosωnt+ b sinωnt

x(t) = e−ζωnt [a cos(ωdt) + b sin(ωdt)]

x =
−b±

√
b2 − 4ac

2a∫
u dv = uv −

∫
v du

δocV = ∀
∑

x(t) =
ω2
nȳ

ω2
n − ω2

sin(ωt)

d

dt

(
δL

δq̇i

)
+
δRD

δq̇i
− δL

δqi
= Qi, i = 1, . . . , n

MẌ + CẊ +KX = F

det
(
K − ω2M

)
= 0

[
K − ω2M

]
X̄ = 0

2 + 2 = 2× 2 = 22 = 0b0100 = 0x2

i ≡
√
−1

x(t) =

∫ t

0

f(τ)h(t− τ)dτ

x(t) =

∫ t

0

f(t− τ)h(τ)dτ

f(t) =
∞∑
n=0

an cos(nω0t) +
∞∑
n=1

bn sin(nω0t)

an =
ω0

π

∫ 2π
ω0

0

f(t) cos(nω0t)dt

bn =
ω0

π

∫ 2π
ω0

0

f(t) sin(nω0t)dt

a0 =
ω0

2π

∫ 2π
ω0

0

f(t)dt

V (ω, ζ) = e−ζωtn
√

[C(ω, ζ)]2 + [S(ω, ζ)]2

X̃i =
1√

XT
i MXi

Xi[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
x(t) = c+ e−ζωnt [a cos(ωdt) + b sin(ωdt)]

σ =
1

N
ln

(
x(0)

x(Ntp)

)
σ = ln

(
x(0)

x(tp)

)
ζ =

σ√
4π2 + σ2

ζ =
σ

2π

ωp = ωn
√

1− 2ζ2

ζ ≈ δh
2ωn

E = mc2

A =

[
0 −K
−K −C

]
B =

[
−K 0

0 M

]
[
UTMU

]
Ḧ +

[
UTKU

]
H = UTF cosωt
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Possibly Useful Equations

x(t) = −
(2ζωωn) f̄

m

(ω2
n − ω2)2 + (2ζωωn)2

cosωt+
(ω2

n − ω) f̄
m

(ω2
n − ω2)2 + (2ζωωn)2

sinωt

=

[
f̄

m

1√
(ω2

n − ω2)2 + (2ζωωn)2

]
cos (ωt− φ), where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

g(ω) =

√
ω4
n + (2ζωωn)2

(ω2
n − ω2)2 + (2ζωωn)2

eiφ, where

φ = φ1 − φ2, where φ1 = tan−1

(
2ζω

ωn

)
and φ2 = tan−1

(
2ζωωn
ω2
n − ω2

)

g(Ω) =

√
1 + (2ζΩ)2

(1− Ω2)2 + (2ζΩ)2
eiφ, where

φ = tan−1 (2ζΩ)− tan−1

(
2ζΩ

1− Ω2

)

g(ω) =
1

m
√

(ω2
n − ω2)2 + (2ζωωn)2

e−iφ, where

φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβω2√

(ω2
n − ω2)2 + (2ζωωn)2

cos(ωt− φ),

where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβΩ2√

(1− Ω2)2 + (2ζΩ)2
cos(ωt− φ), where

φ = tan−1

(
2ζΩ

1− Ω2

)


