
MCHE 485: Mechanical Vibrations
Spring 2016 – Final Exam

Tuesday, May 3

Name: CLID:

Directions: Complete the attached problems making sure to clearly indicate your answer,
show your work, and list any assumptions that you have made (with justifica-
tion for them, if necessary). If you need extra space for any question, you may
attach additional sheets of paper, which will be provided to you. No calculators
are allowed.

Academic Honesty (just a reminder):

An essential rule in every class of the University is that all work for which a
student will receive a grade or credit be entirely his or her own or be properly
documented to indicate sources. When a student does not follow this rule,
s/he is dishonest and s/he defeats the purpose of the course and undermines
the goals of the University.
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Problem 1 – 25 Points
The system in Figure 1 consists of a mass, m, connected to ground through through spring
k and to an input, y, via damper c.

a. Write the equations of motion for this system.

b. What is the natural frequency?

c. Assume y(t) = 0 (i.e. it acts like another ground connection with respect to the mass).
Write the response, x(t), to initial conditions x(0) = 0 and ẋ(0) = v0.

d. Plot the response, x(t), to the same initial conditions for damping ratios of ζ = 0.0,
ζ = 0.2, and ζ = 0.7. Be sure to clearly label the axes, indicate any important features
of the responses, and differentiate between the responses.

e. Now, assume a harmonic input in y(t). Write the transfer function from the amplitude
of the input to the amplitude of the output.

f. Assuming y(t) = ȳ cosωt, write the time response, x(t).

g. Set up the solution procedure to determine the time response, x(t), to the velocity
input, ẏ(t), shown in Figure 2. Define as much as possible based on the information
you have been given. If there are integrals needed, you do not need to solve them,
but do set the problem up such that it could be passed to a calculus student to do
so. If terms in the integration will be zero, please be nice to the calculus student and
indicate so.
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ẏ
(t

)
(m

/s
)

Figure 2: Velocity Command
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Problem 2 – 20 Points
The system in Figure 3 consists of two masses, m1 and m2, affixed to opposite ends of a
rigid, massless bar of length l + a. The distance from the frictionless pin to mass m1 is l,
and the distance from the pin to m2 is a. Mass m2 is also connected to ground via a spring,
k, and a damper, c. There is an always horizontal force, f(t), acting at m1. You may ignore
gravity.

a. Write the equations of motion describing this system.

b. Linearize the equations of motion about θ = 0 and write them in state-space form.

c. Assume f(t) is a pure harmonic input, f(t) = f̄ eiωt. Sketch the approximate frequency
response for damping ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly label
the axes and differentiate between the responses. Also indicate:

i. Magnitude and phase as ω approaches 0.

ii. Magnitude and phase as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.

A coworker suggests attaching the system in Figure 4 to the bar. He claims that this proposed
sensor can measure its acceleration.

d. For the proposed sensor in Figure 4, write the transfer function between the sensor
motion, y(t), and the measurement, x(t).

e. Explain how the sensor can be used to measure acceleration. (Hint : Using the transfer
function from part c., write the relationship between x(t) and ÿ(t).)
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Figure 4: The Proposed Sensor
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Problem 3 – 15 Points
The model sketched in Figure 5 contains a pulley with radius R and moment of inertia
about its center of IO. The pulley is connected to ground through a rotational spring, k,
and rotational damper, c. A inextensible cable that passes over this pulley without slipping
relative to the pulley connects masses m1 and m2.

a. Write the equations of motion describing this system.

b. Assume that the equilibrium angle of the rotational spring is θ = 0 in absence of the
two masses. Determine the equilibrium condition when the two-mass-cable system is
attached to the pulley.

c. Assume that mass m1 is displaced downward by x0 from this equilibrium condition,
then let go.

i. Plot the response θ(t) to this initial displacement input.

ii. Write the time response θ(t) to this initial displacement input.
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Figure 5: Two Masses Connected by a Wire Over a Pulley
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Problem 4 – 20 Points
The model in Figure 6 could be used to simulate a flexible satellite with a thruster force, f(t),
acting on the center mass, m2, which represents the main satellite body mass. The other
two masses, m1 and m3 and the springs, k, and dampers c, are used to represent flexible
appendages on the satellite, such at antennae or solar panels.

a. Write the equations of motion for this model in matrix form.

b. Assuming there is no damping (c = 0), set up and explain the solution procedure to
find the natural frequencies and mode shapes. You do not need to solve the complete
problem, but all necessary information and steps must be clearly defined.

c. For a given set of parameters, the natural frequencies and mode shapes were found to
be:

ω1 = 0.00 rad/s and X1 = [ 0.378 0.378 0.378]T

ω2 = 1.00 rad/s and X2 = [−0.707 0.000 0.707]T

ω3 = 1.18 rad/s and X3 = [−0.598 0.239 − 0.598]T

Assuming that these are correct, plot (on separate sets of properly labeled axes) the
approximate time responses, x1(t), x2(t), and x3(t), to the initial conditions:

i. x1(0) = x2(0) = x3(0) = x0 and all initial velocities are zero.

ii. x1(0) = x2(0) = x3(0) = 0 and ẋ1(0) = v0, ẋ2(0) = 0, and ẋ3(0) = −v0

iii. x1(0) = x2(0) = x3(0) = 0 and ẋ1(0) = v0, ẋ2(0) = v0 + ε, and ẋ3(0) = v0, where
ε is a small positive number.

d. Now, c 6= 0. Will the mode shapes change? Why or why not?

e. Set up and explain the solution procedure to find the natural frequencies and mode
shapes for the damped case (c 6= 0). You do not need to solve the complete problem,
but all necessary information and steps must be clearly defined.
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Figure 6: Flexible Satellite Model
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Problem 5 – 20 Points
The system in Figure 7 contains a mass, mt connected to ground by a spring, k. A massless
and inflexible linkage of length l suspends a mass, m, from a perfect pin joint. There is a
always-horizontal force, f(t), acting on mass m.

a. Write the equations of motion for this system.

b. Write the linearized equations of motion for this system.

c. Set up and outline the solution procedure to determine the response to the force, f(t).
Include all information necessary up to the point of the actual algebra needed solve the
problem. Be sure to fully define everything needed for the solution and fully explain
the steps necessary.

d. For a given set of parameters, the natural frequencies and mode shapes for this system
were found to be:

ω1 = 0.90 rad/s and X1 = [1.00 0.10]T

ω2 = 2.47 rad/s and X2 = [1.00 − 2.59]T

Can the force, f(t), ever excite just a single mode? Why or why not?
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Figure 7: Forced Mass-Spring-Pendulum System
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Possibly Useful Equations

f̄ = mā

I0ᾱ =
∑

M̄0

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

e±iωt = cos(ωt)± i sin(ωt)

x(t) = aeiωnt + be−iωnt

x(t) = a cosωnt+ b sinωnt

x(t) = e−ζωnt [a cos(ωdt) + b sin(ωdt)]

x =
−b±

√
b2 − 4ac

2a∫
u dv = uv −

∫
v du

δocV = ∀
∑

x(t) =
ω2
nȳ

ω2
n − ω2

sin(ωt)

d

dt

(
δL

δq̇i

)
+
δRD

δq̇i
− δL

δqi
= Qi, i = 1, . . . , n

MẌ + CẊ +KX = F

det
(
K − ω2M

)
= 0

[
K − ω2M

]
X̄ = 0

2 + 2 = 2× 2 = 22 = 0b0100 = 0x2

i ≡
√
−1

x(t) =

∫ t

0

f(τ)h(t− τ)dτ

x(t) =

∫ t

0

f(t− τ)h(τ)dτ

f(t) =
∞∑
n=0

an cos(nω0t) +
∞∑
n=1

bn sin(nω0t)

an =
ω0

π

∫ 2π
ω0

0

f(t) cos(nω0t)dt

bn =
ω0

π

∫ 2π
ω0

0

f(t) sin(nω0t)dt

a0 =
ω0

2π

∫ 2π
ω0

0

f(t)dt

V (ω, ζ) = e−ζωtn
√

[C(ω, ζ)]2 + [S(ω, ζ)]2

X̃i =
1√

XT
i MXi

Xi[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
x(t) = c+ e−ζωnt [a cos(ωdt) + b sin(ωdt)]

σ =
1

N
ln

(
x(0)

x(Ntp)

)
σ = ln

(
x(0)

x(tp)

)
ζ =

σ√
4π2 + σ2

ζ =
σ

2π

ωp = ωn
√

1− 2ζ2

ζ ≈ δh
2ωn

E = mc2

A =

[
0 −K
−K −C

]
B =

[
−K 0

0 M

]
[
UTMU

]
Ḧ +

[
UTKU

]
H = UTF cosωt
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Possibly Useful Equations

x(t) = − (2ζωωn) f̄
m

(ω2
n − ω2)2 + (2ζωωn)2

cosωt+
(ω2

n − ω) f̄
m

(ω2
n − ω2)2 + (2ζωωn)2

sinωt

=

[
f̄

m

1√
(ω2

n − ω2)2 + (2ζωωn)2

]
cos (ωt− φ), where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

g(ω) =

√
ω4
n + (2ζωωn)2

(ω2
n − ω2)2 + (2ζωωn)2

eiφ, where

φ = φ1 − φ2, where φ1 = tan−1

(
2ζω

ωn

)
and φ2 = tan−1

(
2ζωωn
ω2
n − ω2

)

g(Ω) =

√
1 + (2ζΩ)2

(1− Ω2)2 + (2ζΩ)2
eiφ, where

φ = tan−1 (2ζΩ)− tan−1

(
2ζΩ

1− Ω2

)

g(ω) =
1

m
√

(ω2
n − ω2)2 + (2ζωωn)2

e−iφ, where

φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβω2√

(ω2
n − ω2)2 + (2ζωωn)2

cos(ωt− φ),

where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβΩ2√

(1− Ω2)2 + (2ζΩ)2
cos(ωt− φ), where

φ = tan−1

(
2ζΩ

1− Ω2

)


