
MCHE 485: Mechanical Vibrations
Spring 2015 – Final Exam

Thursday, May 7

Name: CLID:

Directions: Complete the attached problems making sure to clearly indicate your answer,
show your work, and list any assumptions that you have made (with justifica-
tion for them, if necessary). If you need extra space for any question, you may
attach additional sheets of paper.

Academic Honesty (just a reminder):

An essential rule in every class of the University is that all work for which a
student will receive a grade or credit be entirely his or her own or be properly
documented to indicate sources. When a student does not follow this rule,
s/he is dishonest and s/he defeats the purpose of the course and undermines
the goals of the University.
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Problem 1 – 15 Points
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Figure 1: A Mass-
Spring System

The system in Figure 1 consists of a mass, m, connected to
input y through spring k and damper c.

a. Write the equations of motion for this system.

b. What is the natural frequency?

c. Assume a unit step input in y(t). Write the response,
x(t), to this step input.

d. Plot the response, x(t), to the unit step input for damping
ratios of ζ = 0.0, ζ = 0.2, and ζ = 0.7. Be sure to clearly
label the axes and differentiate between the responses.
For the ζ = 0.2 case, label the rise time, settling time,
and peak overshoot. You may replot the response on a
separate set of axes, if needed, to properly label these
quantities.

e. Now, assume a harmonic input in y(t). Write the transfer
function from the amplitude of the input to the amplitude
of the output.

f. Sketch the approximate frequency response for ζ = 0.0,
ζ = 0.2, and ζ = 0.7. For each damping ratio, be sure to indicate:

i. Magnitude and phase as ω approaches 0.

ii. Magnitude and phase as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.
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Problem 2 – 25 Points
The system in Figure 2 is a common model used for rotating machinery. It consists of a
mass, m1, connected to ground through a spring k, and a damper, c. A second mass, m2, is
offset from center by eccentricity, e, and is rotating at an angular velocity of ω. There is a
secondary mass, m3, and spring, k2, that will be added in for parts d.–g. of this problem.

Ignoring the secondary, k2–m3, subsystem:

a. Write the equations of motion describing the motion of m1.

b. What is the natural frequency?

c. Sketch the approximate frequency response. Be sure to indicate:

i. Magnitude as ω approaches 0.

ii. Magnitude as ω approaches infinity.

iii. Magnitude when ω equals the natural frequency of the system, ωn.

Now, the secondary subsystem consisting of k2 and m2 is added.

d. How should this subsystem be designed such that m1 remains stationary, or nearly
stationary, over a range of input frequencies near the natural frequency of the original
system. Give values for k2 and m3 in terms of k1, m1, m2, and e.

e. What is the fundamental compromise in the design for part d. ?

f. Write the equations of motion for the new system, including the secondary, k2–m3,
subsystem.

g. Sketch the approximate frequency response for x and x3 for this new system.

Added for Part d.
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Figure 2: A Rotating Imbalance System



MCHE 485 – Final Exam – May 7, 2015 CLID:

Problem 3 – 25 Points
The system in Figure 3 is a mass-spring system moving along the ground. Figure 4 is a
similar system with friction. The coefficient of friction between the mass and ground in this
system is µ.

a. Write the equations of motion for these two systems.

b. For both systems, plot the response, x(t), to initial conditions:

x(0) = x0 and ẋ(0) = −v0

For the system in Figure 3, plot the response for a damping ratio ζ = 0.1. For the
system in Figure 4, use a coefficient of friction that would result in approximately the
same settling time. Be sure to clearly label the axes and differentiate between the
responses. Indicate what is different between the responses for two energy dissipation
models.

A coworker suggests attaching the system in Figure 5 to the main system mass. He claims
that this proposed sensor can measure acceleration.

c. For the proposed sensor in Figure 5, write the transfer function between the sensor
motion, y(t), and the measurement, x(t).

d. Explain how the sensor can be used to measure acceleration. (Hint : Using the transfer
function from part c., write the relationship between x(t) and ÿ(t).)
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Problem 4 – 20 Points
The absentminded professor from Mid-Term 1 is still spilling his coffee on the way from the
faculty lounge to his office. The recommendations you gave him based on single-mode model
you previously developed failed to capture the complete dynamics. Extend the 1 degree-of-
freedom model by modeling the sloshing using the two modes of horizontal motion, x1 and
x2, of the coffee mass, m1 and m2, connected by a springs, k, and dampers, c. The mug wall
is considered to be rigid. A figure of this simple model is shown in Figure 6. The professor’s
unique stroll creates a purely-horizontal harmonic input to the mug, y(t) = ȳeiωt.

a. Write the equations of motion for this simplified model of the coffee mug system.

b. Ignoring the dampers, set up and outline the solution procedure to determine the
natural frequencies and mode shapes of this system. Include all information necessary
up to the point of the actual algebra needed solve the problem. Be sure to fully describe
the steps necessary.

c. Again ignoring the dampers, if m1 = m2, what to you expect the mode shapes to be?
Why?

d. Still ignoring the dampers, sketch the approximate frequency response. Be sure to
indicate:

i. Magnitude ω approaches 0.

ii. Magnitude ω approaches infinity.

iii. Magnitude when ω equals the natural frequencies of the system, ω1 and ω2.

e. Now, consider the dampers. Do you expect the mode shapes to change from those
found by the steps you outlined in part b. Why or why not?
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Figure 6: Simplified, Multi-mode Coffee Sloshing Model
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Problem 5 – 15 Points
The system in Figure 7 represents a pair of links connected by a spring, k. Ignore gravity
and consider the linkages of length l to be massless and inflexible. There is a pure torque,
T , at the upper joint in the figure. There are point masses, both of mass m, at the ends of
the links. You may assume that the spring is at equilibrium with both angles, θ and φ, are
zero (Note: The figure doesn’t reflect this equilibrium.).

a. Write the linearized equations of motion for this system.

b. Assuming small angles of θ and φ, will there be a rigid-body mode? Why or why not?

c. Set up and outline the solution procedure to determine the response the torque, T .
Include all information necessary up to the point of the actual algebra needed solve
the problem. Be sure to fully describe the steps necessary.
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Figure 7: Two-Link-Spring System
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Possibly Useful Equations

f̄ = mā

I0ᾱ =
∑

M̄0

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

e±iωt = cos(ωt)± i sin(ωt)

x(t) = aeiωnt + be−iωnt

x(t) = a cosωnt+ b sinωnt

x(t) = e−ζωnt [a cos(ωdt) + b sin(ωdt)]

x =
−b±

√
b2 − 4ac

2a∫
u dv = uv −

∫
v du

δocV = ∀
∑

x(t) =
ω2
nȳ

ω2
n − ω2

sin(ωt)

d

dt

(
δL

δq̇i

)
+
δRD

δq̇i
− δL

δqi
= Qi, i = 1, . . . , n

MẌ + CẊ +KX = F

det
(
K − ω2M

)
= 0

[
K − ω2M

]
X̄ = 0

2 + 2 = 2× 2 = 22 = 0b0100 = 0x2

i ≡
√
−1

x(t) =

∫ t

0

f(τ)h(t− τ)dτ

x(t) =

∫ t

0

f(t− τ)h(τ)dτ

f(t) =
∞∑
n=0

an cos(nω0t) +
∞∑
n=1

bn sin(nω0t)

an =
ω0

π

∫ 2π
ω0

0

f(t) cos(nω0t)dt

bn =
ω0

π

∫ 2π
ω0

0

f(t) sin(nω0t)dt

a0 =
ω0

2π

∫ 2π
ω0

0

f(t)dt

V (ω, ζ) = e−ζωtn
√

[C(ω, ζ)]2 + [S(ω, ζ)]2

X̃i =
1√

XT
i MXi

Xi[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
x(t) = c+ e−ζωnt [a cos(ωdt) + b sin(ωdt)]

σ =
1

N
ln

(
x(0)

x(Ntp)

)
σ = ln

(
x(0)

x(tp)

)
ζ =

σ√
4π2 + σ2

ζ =
σ

2π

ωp = ωn
√

1− 2ζ2

ζ ≈ δh
2ωn

E = mc2

A =

[
0 −K
−K −C

]
B =

[
−K 0

0 M

]
[
UTMU

]
Ḧ +

[
UTKU

]
H = UTF cosωt
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Possibly Useful Equations

x(t) = −
(2ζωωn) f̄

m

(ω2
n − ω2)2 + (2ζωωn)2

cosωt+
(ω2

n − ω) f̄
m

(ω2
n − ω2)2 + (2ζωωn)2

sinωt

=

[
f̄

m

1√
(ω2

n − ω2)2 + (2ζωωn)2

]
cos (ωt− φ), where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

g(ω) =

√
ω4
n + (2ζωωn)2

(ω2
n − ω2)2 + (2ζωωn)2

eiφ, where

φ = φ1 − φ2, where φ1 = tan−1

(
2ζω

ωn

)
and φ2 = tan−1

(
2ζωωn
ω2
n − ω2

)

g(Ω) =

√
1 + (2ζΩ)2

(1− Ω2)2 + (2ζΩ)2
eiφ, where

φ = tan−1 (2ζΩ)− tan−1

(
2ζΩ

1− Ω2

)

g(ω) =
1

m
√

(ω2
n − ω2)2 + (2ζωωn)2

e−iφ, where

φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβω2√

(ω2
n − ω2)2 + (2ζωωn)2

cos(ωt− φ),

where φ = tan−1

(
2ζωωn
ω2
n − ω2

)

x(t) =
eβΩ2√

(1− Ω2)2 + (2ζΩ)2
cos(ωt− φ), where

φ = tan−1

(
2ζΩ

1− Ω2

)


