MCHE 485: Mechanical Vibrations Spring 2020 Final Exam Material Covered

Modeling

- Modeling and linearization of springs
- Linear, single DOF system modeling and free vibration
 - Undamped
 - Damped
- Equivalent springs
- Single DOF, rotational modeling and vibration
 - Linearization via small angles and Taylor-series expansion
 - Rotational springs

System Properties and Single Degree-of-Freedom Free Vibration

- Solving for time responses from equations of motion, including initial conditions
- Conversion between various forms of time responses (combination of sin and cos, exponential, sin or cos with phase shift, etc)
- System properties such as:
 - Natural frequency
 - Period of oscillation
 - Damped natural frequency
 - Damping ratio
 - Decay envelope
- Relationship between system properties and system parameters
 - ex) What effect does increasing mass have on frequency?
 - ex) Does doubling the spring constant double frequency?

Forced Responses for Single Degree-of-Freedom Systems

- Step inputs
 - Effect of damping on response
 - Settling time
 - Rise time
 - Overshoot
- Harmonic position (Seismic) inputs, with damping and without
 - Relationship between natural frequency and excitation frequency

- General response trends
 - Magnitude
 - Phase
- Direct force harmonic excitation, with damping and without
 - Relationship between natural frequency and excitation frequency
 - General response trends
 - Magnitude
 - Phase
- Transfer Function form
- Rotating Imbalance
 - Relationship between natural frequency and rotation frequency
 - General Response Trends
- System ID
 - via Free Response
 - \star natural frequency
 - \star damping ratio via log. dec.
 - via Frequency response
 - \star Natural frequency via peak
 - ★ Damping via:
 - Relationship between peak and static deflection
 - Half-power points
- Non-viscous damping
 - Dry Friction (Coulomb Damping)
 - ★ Form of force
 - \star Response characteristics
 - \star Linear decay rate
 - \star Generally non-zero "stop" point
- Accelerometers and Seismometers
 - General structure
 - Parameter selection (and resulting design)
 - Accuracy of measurement

Fourier Analysis

- Fourier Analysis
 - Basic understanding
 - Superposition
 - Use to get response

Multi-Degree-of-Freedom Vibration

- Free response of undamped multi-mode systems
 - Matrix form of equations of motion
 - Solving the eigenvalue/eigenvector problem to get:
 - \star Natural frequencies
 - \star Mode shapes
 - Using eigenvalue/eigenvectors to describe response
 - \star excitation at either eigenvector, only that vector is excited
 - \star otherwise, both modes show up
- Forced response of undamped multi-mode systems
 - Matrix form
 - Using Matrix inverse to solve
- Ideal vibration absorbers
 - Design of absorber (match frequencies)
 - Design compromises
 - \star more mass, higher k
 - \star more robust, but heavier
- Real performance of vibration absorbers
 - Undamped vs damped
 - Influence of transient vs steady state
- "Zeros" in a Forced Response Multi-DOF vibration-absorber-type response
 - Can I design N-mass system to keep m_n stationary?
 - At what frequency of input is m_n stationary?
- Orthonormal form of eigenvectors
 - Using orthonormal form to diagonalize and decouple equations of motion
- Multi-DOF damping
 - Influence of damping on frequency and mode shapes
 - Placing damped equations into state-space or symmetric form
 - Setting up state-space or symmetric form eigenvalue/eigenvector problem
- Repeated and Zero Frequencies

State-Space Forms

- Writing equations of motion as a system of first-order differential equations
- Linearizing the equations and writing in State-Space Form (matrix-form)