System ldentification from Forced Responses

Q: How can we estimate system properties from forced responses?
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Q: How can we (experimentally) generate plots like those above?

1. Select the frequency of our harmonic input,
measure the amplitude of response.

2. Repeat over a range of frequencies.

Q: How can we estimate frequency?
Directly from frequency location of the peak ; L
(Okay for lightly damped systems, 5«1 ) See i s e drhon

Q: What about damping?

1. Look at the ratio of the peak amplitude to the static reponse (w =0)
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2. Look at half-power points



2. Look at half-power points (cont.)
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System ldentification Summary

- There are many methods to estimate natural freq. and damping ratio.

* The ones we looked at so far are for 1DOF systems
(or systems with 1 dominant mode)

« We often need to filter the data before these calculations
(Real data is noisy.)

- Often preferable to combine methods.



Problem 2.45

2.45. Figure P2.45 shows the steady state response (transients are ignored) of a direct force excited, SDOF
system. The mass is equal to 2 kg. What other system parameters can you determine?
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Figure P2.45
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Problem 2.68

2.68. The plot in Figure P2.68a shows amplitude response of the system illustrated in Figure P2.68b a cen-
trifuge as a function of frequency with a specimen, my, in the machine. The mass of the centrifuge
is my and it’s restrained by a spring of stiffness k. Given that the radius of the spinning cham-
ber is 0.1 m and that the mass m is 100 kg, find the mass of the specimen as well as the spring
constant k.
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Problem 2.71

2.71. Assume that most of the wet clothes in a dryer (Figure P2.71) are uniformly disln'b.uled arjound the drum
(mass = 10 kg). In addition to these clothes, a single .8 kg lump of clothing also lies against the drum’s
surface. How will these mass terms enter the equation of motion (2.9.5) for the system?
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Figure P2.71

Here, only the 0.8kg portion of the clothes mass is the
imbalance. The balanced portion of the clothes, 10kg and
drum itself, m2, may be grouped with the "body" mass, m1.

So, the equation becomes:

(ml—\ g 108)% + \kx= 08 uPacLs)




Problem 2.74

2.74. A simplified model of a rotating shaft within its bearings is shown in Figure P2.74. If the shaft is
imbalanced, it will experience a time-varying force due to the rotating mass. The operating frequency
is 60 rad/s, the support stiffness k; is 170,000 N/m, and the total rotating mass m is 100 kg. Determine

the amplitude of vibration, given that at high frequencies (w — o0) the oscillation amplitude is equal to
001 m. You’ll have to figure out / from the given data.
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Figure P2.74

We know that the frequency response for a rotating imbalance
system looks like:
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Problem 2.78

2.78. Estimate the size of the peak amplitude response for
3% 4+ 17.5x + 4000x = 15 sin(wt?)

without solving the equation exactly.
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