Transfer Functions (Sec. 2.5)

Describe the relationship between the input and the output.

How is the input "transferred" to the output?

Usually, transfer functions an written as:

$$\frac{2utput}{1 nput} = from air provides prangles $Y(t)$ or $F(t) \ge \frac{1}{2}$ but we usually don't write
Input = from air provides prangles $Y(t)$ or $F(t) \ge \frac{1}{2}$ then in the time domain
Let's lack at the indempet, sammally practic example
 $X(t) = \frac{1}{12} \frac{2}{12} \frac{1}{2} \sin \omega t$ and $Y(t) = \frac{1}{2} \sin \omega t$ so
 $\frac{X(t)}{Y(t)} = \frac{1}{12} \frac{2}{12} \frac{1}{2} \sin \omega t}{\frac{1}{2} \sin \omega t} = \frac{1}{12} \frac{2}{12}$
We often write transfer functions as $G(\omega) = \frac{1}{12} \frac{2}{12} \frac{1}{12} \frac{1}{$$$

Forced Vibration with Viscous Damping (Sec. 2.6)

Forced Vibration with Viscous Damping (cont.)

Normalized Frequency (Ω)

Complex Representations (Sec. 2.7)

= $(\overline{x}_r \cosh t - \overline{x}_i \sinh t) + i(\overline{x}_r \sin \omega t + \overline{x}_i \cosh t) \in Take the real or imaginary part of this based on the form of the input$

Complex Representations (cont.)

(): What are Xx and X.?

Responses in the Complex Plane

