Degrees of Freedom (DOF)

- <u>Q</u>: What is a degree-of-freedom?
 - informally, the ways in which the system can move
 - more formally, the minimum number of independent variables to fully describe the system configuration

Another Rotational Example

 $M^2 \theta + mal sin \theta = T$

 $\dot{\Theta} + \frac{\Theta}{0} \sin \Theta = \frac{1}{m^2}$

Chapter 1 – Free Vibration of 1DOF Systems

Now, just apply $\xi \overline{F} \cdot m\overline{a}$ $\Xi \overline{F} = -F_{Sp} + mag$ $\overline{a} = \frac{1}{4}$ $m\overline{y} = -F_{Sp} + mag$

We can do better by radiizing that free ubration will occur around the equil point.

Q: What is the equilibrium position of this system?
Occurs where the spring and gravity forces bolonce
$$y=0$$
 at equil,
 $my'=-k(y-1)+mg \longrightarrow mg=k(y_0-1)$ defines the equil position y_0

Now, let $\gamma(t) = \gamma_0 + \chi(t) \leftarrow \chi(t)$ is notion origin the equilibrium position $(\ddot{\gamma}(t) = \ddot{\chi}(t))$ because $\gamma_0 = constant)$

Substitute this definition into the equation of motion.

$$m\ddot{x} = -k\left[\left(y_{0}+x\right)-l\right] + mg = -k\left[\left(y_{0}-l\right) + x\right] + mg$$

$$m\ddot{x} = -k\left[y_{0}-l\right] - kx + k\left[y_{0}-l\right]$$

$$m\ddot{x} = -kx$$

$$m\ddot{x} + kx = 0$$

Q: How do we find the response,
$$\chi(t)$$
?
It is a linear, constant coefficient, autonomous ODE
only x more kan No forcing
and its derive constant function
So, we know the solution has the form:
 $\chi(t) = ae^{2t} - Reg this "assumed" solution into the ODE
 $\dot{\chi} = ahe^{2t} - Reg this "assumed" solution into the ODE
 $\dot{\chi} = ahe^{2t} + \chi = ahe^{2t}$
 $m(ahe^{2t}) + k(ae^{2t}) = 0$
 $(mh^{2t} k) ae^{2t} = 0 - for this equation to be true mh^{2t} k=0 (at 0 and e^{2t} + 0 for finite t)$
Solut for λ : mh^{2t} k=0 $\rightarrow h^{2t} = \frac{m}{m} \rightarrow \lambda = \pm c \sqrt{m}$, so the solution is
 $\chi(t) = a_1 e^{-t/k_1 t} + a_2 e^{it/k_1 t}$
 $\chi(t) = a_1 e^{-t/k_1 t} + a_2 e^{it/k_1 t}$
New to solve for a or based as initial conditions$$

Equivalent Springs

Aside:

 $F_{\Re} k \delta$ assumes that the spring is linear. We can usually only make this assumption within some small region.

Rotational Vibration & Linearization (Sec. 1.3)

Sum minnents about point 0 to find:

$$I_{o}\overline{J} = \Xi \overline{M}_{0} = (\overline{r_{m}}_{0} \times -m_{0}\overline{J}) = (I\sin\theta\overline{I} \cdot I\cos\theta\overline{J}) \times (-m_{0}\overline{J})$$

 $I_{o}\overline{\theta}\overline{K} = -m_{0}I\sin\theta\overline{K}$
 $I_{o}=m_{1}I^{2}$ (point mess m in pure notation at o distance I)
 $m_{1}I^{2}\overline{\Theta} = -m_{0}I\sin\theta \longrightarrow m_{1}I^{2}\overline{\Theta} + m_{0}I\sin\theta = 0$
 $\underline{\Omega}^{2}$ How do we find $\theta(\overline{A})^{2}$
This diff q_{1} is nonlinear (how $\sin\theta$ instead of θ), so:
1) complex diff q_{1} solution precedure of
 $\underline{\Omega}$ linearize

Linearization

Typically, we linearize about some operating point. In many cases, it makes sense to linearize about an equilibrium position.

Q: How do we know what the equilibrium positions are?

One "trick" is to eliminate the "motion" variables (velocity and higher order derivatives) from the equation of motion.

<u>Q</u>: Two equilibrium points... Which one should we choose? It depends on the system and its operating conditions. In this case:

Now, linearize about the chosen equil. There are many methods.

Taylor Series Expansion

