MCHE 485: Mechanical Vibrations
Spring 2019 — Homework 1

Assigned: Friday, January 25th
Due: Friday, February 1st, 5pm

Assignment: From “Principles of Vibration” by Benson Tongue, problems:
1.1, 1.3, 1.21, 1.23, 1.24, 1.31, 1.54

Submission: Emailed single pdf document:
e to joshua.vaughan@louisiana.edu
e with subject line and filename ULID-MCHE485-HW1, where ULID is
your ULID
e Note: Submissions with incorrect filenames or submitted as multiple

images/pdfs will be rejected.



Problem 1.1

11 If x(¢) = a1/ + aze™ ', x(0) = 4 and %(0) =
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2, what are a; and a; equal to?
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Problem 1.3

L1 If x(t) = a1’ + aze™ ", x(0) = 4 and x(0) = 2, what are a; and a; equal to?
1.2. Express (1 + 2i)e'’ + (1 — 2i)e™'*" in terms of sin(wt) and cos(wt).

1.3. If x(t) = by cos(wt) + b, sin(wt), with the same initial conditions as in Problem 1.1, what are b; and
b, equal to?
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Problem 1.21

1.21. What is w, for the system illustrated in Figure P1.21 in terms of m, ki, k2, and k3?
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Figure P1.21

Use equivalent springs to simplify this problem.
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Problem 1.23

1.23. Find the equivalent spring constant for the two springs with widely differing spring constants shown
in Figure P1.23. Comment on your result.
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Here, the lower spring constant, k1, clearly dominates the effective spring
constant of the two in series.

This should make intuitive sense; imagine a scenario just like the one in the
problem. There are two springs in series, one much stiffer than the other.
The softer one (lower spring constant) will compress much more easily. As
such, it dominates the characteristics of their combination.

Another way to picture this is to look at the characteristics as we approach
physical limits. As the stiff spring becomes infinitely stiff, the soft spring is
the only remaining flexible part, so it completely determines the spring
constant.



Problem 1.24

1.24. Find the equivalent spring constant for the two springs with widely differing spring constants shown
in Figure P1.24. Comment on your result.

Figure P1.24

&ﬁ'- lc 10k, =1k,

In this case, the stiffer spring dominates the resulting equivalent spring
constant. The reason is easy to see if we look at the forces these springs
would cause. For example:
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Problem 1.31

1.31. Consider the system illustrated in Figure P1.31, which has two linear springs. The unstretched length
of kj is .5 m and the unstretched length of k; is .25 m. k; = 1000 N/m, k = 2000 N/m, m = 2
kg, I = .5 m. Find the equilibrium position of the mass and determine the natural frequency of the
system. Compare this natural frequency to that associated with / = .75 m (i.e., no precompression in

the spring).
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Problem 1.54

1.54. As a practical joke, you’ve put some fast-acting glue in your friend’s slingshot as in Figure P1.54. Your
friend puts a mass of .06 kg in the slingshot, pulls it back 1 m, and then releases it. If the mass travels
out 1 m beyond the slingshot and then returns to strike his hand .5 second after the release, what must
the spring constant be for the massless elastic band? Assume that the elastic band has an unstretched

length equal to 0 m.

Slingshot

Figure P1.54

The key to this problem is realizing that traveling from release to 1m beyond
the slingshot to strike the hand is represents one period of oscillation.

So, that tells us the 0.5s = 1 period for this system.
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