MCHE 474: Control Systems Fall 2017 - Homework 1

Assigned: Monday, August 28
Due: Friday, September 1, 5pm

Assignment: The problems included in this document.

Submission: Emailed single pdf document:

- to joshua.vaughan@louisiana.edu
- with subject line CLID-MCHE474-HW1, where CLID is replaced with your CLID
- and that has a single pdf attached with filename CLID-MCHE474-HW1, where CLID is replaced with your CLID
- Note: Submissions with incorrect filenames or submitted as multiple images/pdfs will be rejected.

Problem 1

Figure 1 shows a planar representation of a walking robot of body mass m. You may assume the legs are massless. The robot is on an incline, but the center of mass is still centered between its legs with respect to the inclined plane.
a. Identify all the forces acting on the system. Draw the free body diagram.
b. Assume a rigid configuration as drawn in Figure 2. Sum moments about the lower leg's groundcontact location.
c. What has to happen for the robot to

Figure 2: Walking Robot on an Incline fall down the hill? Use your answer from part b as support.
d. What do these moments suggest about how the robot should be oriented on uneven terrain?
a)

Problem 1 (cont)
b. Sum moments about point 0. A key insight to this problem is treating this configuration as a single, rigid body. This allows us to ignore the reaction forces. So, the free body diagram reduces to:

c) To stay stable, we wont moments pushing θ back to θ_{0}. This is the $-\bar{k}$ direction For the robot to fall dawn the hill, the com must shift to "outside" of pant O When that happens, gravity create a positive moment dart O, which "wants' to make the the hill.
d) The COM should be leet inside the leg contact points (which refine the support poliggn)

Problem 2

Figure 2 shows a robotic arm. Assume that the elbow joint is held rigid, such that θ_{2} is constant. The two links, l_{1} and l_{2}, are both rigid and massless. There is a point mass, m, at the endpoint. There is a pure torque, T, acting at the pin joint.
a. Identify all the forces acting on the system. Draw the free body diagram.
b. How many degrees-of-freedom does the system have?
c. Write the position of the endpoint mass, m, relative to the pin.
d. Write the equations of motion for this

Figure 2: A Robotic Arm system.
e. What torque, T, is required to maintain a configuration at angle θ_{i} ?

$$
\text { Define } \theta_{3}=\theta_{2}-\theta_{1}
$$

b) The system has one dogie of freedom.
c) $\bar{r}_{m 1_{0}}=\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{2}\right) \overline{\bar{I}}+\left(l_{1} \sin \theta_{1}+l_{2} \sin \theta_{3}\right) \overline{\bar{J}}$
d) Sum moments about panto (thu pin)

$$
\begin{aligned}
& I_{0} \bar{\alpha}={\overline{r_{m / 0}}} \times-m g \overline{\bar{J}}=\left[\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right) \overline{\bar{I}}+\left(l_{1} \sin \theta_{1}+l_{2} \sin \theta_{3}\right) \bar{J}\right] \times(-m g \bar{J})-T \bar{K} \\
& I_{0} \bar{\alpha}=\left[-m g\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right)-T\right] \bar{K}
\end{aligned}
$$

Problem 2 (cont.)

$$
\begin{aligned}
I_{0} \bar{\alpha}= & {\left[-m g\left(-\lambda_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right)-T\right] \bar{k} } \\
\bar{\alpha}= & -\theta_{1} \bar{k} \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& -I_{0} \theta=-m g\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right)-T \in \text { all in } \bar{K} \\
& I_{0} \theta-m g\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right)=T
\end{aligned}
$$

Nonce that this is only stable
in certain configurations. (This term needs to be positive)
e) For a fixed θ_{1}, the tape and the moment created by gravity mut Dolarice.

One "trick" is to xt all the motion terms to $2 e r 0$.

$$
\begin{aligned}
& I_{0} \theta^{\rightarrow 0}-m g\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right)=T \\
& \text { So } T=-m g\left(-l_{1} \cos \theta_{1}+l_{2} \cos \theta_{3}\right)
\end{aligned}
$$

Problem 3

In Figure 3, a block of mass m, height h , and width w rests on an incline place of angle $\boldsymbol{\theta}$. The coefficient of friction between the plane and the block is μ.
a. Draw the free body diagram for this system.
b. How many degrees of freedom does this system have if it is assumed that it does not tip over?
c. How many degrees of freedom does this system have if it's

Figure 3: Block on an Incline Plane possible that it tips over?
d. Write the equations of motion for this system.
e. At what combination of angle and coefficient of friction will the block begin to slide?
a)

b) The system has 1 DOF. The block only slides down the incline.
c) If the box can tip over, then there are 2 DOF. We can use the COM location along the incline and the angle of tipping relative to the incline.

Problem 3 (cont)

Assume the box will not the over. It only slides dawn the incline.

$$
\begin{array}{r}
\sum \bar{F}=\left[-F_{f}-m g \sin \theta\right] \bar{I}+\underbrace{[N-m g \cos \theta] \bar{J}} \\
F_{f}=\mu N_{\operatorname{sgn}}(\dot{x}) \quad \text { No motion in } J \text {, so } \\
N=m g \cos \theta
\end{array}
$$

$$
\operatorname{sgn}(\dot{x})=\left\{\begin{array}{cc}
-1 & \dot{x}<0 \\
0 & \dot{x}=0 \\
1 & \dot{x}>0
\end{array}\right.
$$

So,

$$
\begin{aligned}
& M \ddot{x}=-\mu N \operatorname{sgn}(\dot{x})-m g \sin \theta \\
& M \ddot{x}=-\mu(m g \cos \theta) \operatorname{sgn}(\dot{x})-m g \sin \theta \\
& \ddot{x}=-\mu g \cos \theta \operatorname{sgn}(\dot{x})-g \sin \theta
\end{aligned}
$$

e) To determine this, look at the condition were no motion occurs. Find tho boundary where that expressing is no longer twee

$$
\begin{aligned}
\ddot{x}= & -\mu g \cos \theta \operatorname{sgn}(\dot{x})-g \sin \theta \quad \rightarrow \quad-\mu \cos \theta \operatorname{sgn}(\dot{x})=\sin \theta \\
& \mu \cos \theta=\sin \theta
\end{aligned}
$$

$u=\frac{\sin \theta}{\cos \theta}=\tan \theta \leftarrow$ This is the minimum μ to prevent sliding
So
If $\mu<\tan \theta$ the block will slide.

Problem 4

Figure 4 shows a system of a uniform rod, length l and mass m rotating about a perfect pin. An always-horizontal force is acts on the end of the rod.
a. Draw the free body diagram for this system.
b. Write the equations of motion for this system.

Figure 4: A Bar Pendulum with Force at End
b) Sum moments abut point 0 $I_{0} \bar{\sigma}=\sum \bar{M}_{0}=\left(\bar{r}_{c / 0} \times-m g \bar{J}\right)+\left(\bar{r}_{p l 0} \times f \bar{I}\right)$ $=\left[\left(\frac{l}{2} \sin \theta \overline{\bar{I}}-\frac{l}{2} \cos \theta \overline{\bar{J}}\right) \times(-m g \overline{\bar{J}})\right]+[(l \sin \theta \bar{I} \cdot l \cos \theta \bar{J}) \times f \overline{\bar{I}}]$

$$
\frac{1}{3} m l^{2} \ddot{\theta} \bar{K}=-m g \frac{l}{2} \sin \theta \bar{K}+r \cos \theta \bar{K}
$$

$$
\frac{1}{3} m b^{2} \dot{\theta}+m g \frac{l}{2} \sin \theta=f \operatorname{lcos} \theta<\text { we con lineark by assuming small angles about } \theta=0
$$

$$
\frac{1}{3} m l \ddot{\theta}+m g \frac{l}{2} \theta=f l \quad \leftarrow \text { Linearized Eq of Motion }
$$

