MCHE 474: Control Systems

Fall 2017 - Mid-Term 2

Thursday, November 9

Name:

CLID: \qquad

Directions: Complete the attached problems making sure to clearly indicate your answer, show your work, and list any assumptions that you have made (with justification for them, if necessary). If you need extra space for any question, you may attach additional sheets of paper, which will be provided to you. No calculators are allowed.

Academic Honesty (just a reminder):

An essential rule in every class of the University is that all work for which a student will receive a grade or credit be entirely his or her own or be properly documented to indicate sources. When a student does not follow this rule, s / he is dishonest and $\mathrm{s} /$ he defeats the purpose of the course and undermines the goals of the University.

LID: \qquad

Problem 1-40 Points

For the block diagram shown in Figure 1:
a. Write the closed-loop transfer function.
b. Write the closed-loop natural frequency in term of K and K_{1}.
c. Write the closed-loop damping ratio in term of K and K_{1}.
d. Assuming $J=1 \mathrm{~kg}-\mathrm{m}^{2}$, find values of K and K_{1} that would result in a maximum percent overshoot of 25% and a peak time of 2 s .
Note: Just set up the equations needed to calculate the actual numerical values. Do so in a way such that all that would remain is plugging them into a calculator for solution.
e. What is the setting time for that choice of K and K_{1} ?
f. What is the steady-state response of $y(t)$ to a unit step input in $r(t)$?

Figure 1: Block Diagram for Closed-loop System
a. $\quad V=\frac{K}{J S}(E \cdot K, V)$

$$
\begin{aligned}
& \left.\begin{array}{c}
\left(1+\frac{K K_{1}}{J s}\right) V=\frac{K}{J s} E \\
V=\left(\frac{K}{J_{s}+K K_{1}}\right)
\end{array}\right) \xrightarrow{R(s)} \xrightarrow{E} \xrightarrow{\frac{K}{J s+K K_{1}}} \xrightarrow{\square} \xrightarrow{\square} \\
& y=\frac{1}{s} V=\left[\frac{k}{J s^{2}+K K_{1} s}\right\rfloor E \\
& y=\left[\frac{K}{J s^{2}+K K_{1} s}\right](R-4) \\
& {\left[1+\frac{K}{J s^{2}+K K, S}\right] y=\frac{K}{J s^{2}+K K, S} R} \\
& {\left[J s^{2}+K K_{1} s+K\right] 4: K R \rightarrow \frac{4}{R}: \frac{K}{J s^{2}+K K_{1} s+K}}
\end{aligned}
$$

Problem 1 (cont.)
$\frac{4}{R}=\frac{K}{J s^{2}+K K_{1} S+K} \quad$ Deride num. I den by J to put in istawlerd farm
$\frac{4}{R}=\frac{K / J}{\rho+\frac{K K 1}{J} s+\frac{K}{J}} \leftarrow$ Now match with $\rho^{2}+2\left\{\right.$ inst wo ${ }_{n}^{2}$ for $b+c$
b: $\omega_{n}^{\partial}=k / J \rightarrow \omega_{n}: \sqrt{\frac{k}{J}}$
c. $\partial \Sigma \omega_{n}=\frac{K K_{1}}{J} \rightarrow \Sigma=\frac{K K_{1}}{\partial \omega_{n} J}=\frac{K K_{1}}{\partial J \sqrt{K_{J}}}$
d. To ovishoct $=100 \exp \left(\frac{-\{\pi}{\sqrt{1-\{2}}\right)=25^{\circ} 0$

$$
\begin{aligned}
& \exp \left(\frac{-\{\pi}{\sqrt{1 \tau^{2}}}\right)=0.25
\end{aligned}
$$

Peak time $T_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\omega_{n} \sqrt{1-\varepsilon^{2}}}=2 s$
need $\omega_{d}=\frac{\pi}{2} \mathrm{rod} / \mathrm{s} \rightarrow \omega_{n}=\frac{\omega d}{\sqrt{1-\varepsilon^{2}}} \leftarrow$ ply in \langle fur above

$$
\text { Then, set } w_{n}-\sqrt{\frac{K}{J}}: \sqrt{K}=1.72 \frac{\sqrt{x}}{S}
$$ to fund $\omega_{n}=1.72 \mathrm{ro} / \mathrm{s}$

$$
\text { So, } K=2.95
$$

We then use $k_{1}=\frac{2 \varepsilon \omega_{n} J}{k}$ to find $k_{1}=0.47 \quad \begin{aligned} & \text { numerical value not } \\ & \text { necesson or the exam }\end{aligned}$
e. The settling five is
$T_{s}=\frac{4}{\sum \omega_{n}}$ so, using the \sum and ω_{n} form pat d, we fud
$T_{S}=\frac{4}{(0.400)(1.72)}=5.7653$ numerical valve nt necessary on the exam

Problem 1 (cont.)
f. We found the CL TF to be:

$$
\frac{4}{R}=\frac{K}{J s^{2}+K K_{1} s+K} \quad \text { so } \quad y=\left[\frac{K}{J s^{2}+K K_{1} S+K}\right] R
$$

For a step input $R(S)=\frac{A}{S}$ where A is the step amplitude
To fro the steaderstate vole, us the Final Value The rem:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s y(s) \\
& \left.\lim _{s \rightarrow 0} s y(s)=\lim _{s \rightarrow 0} \&\left[\left(\frac{k}{J s^{2}+K K_{1} s+k}\right) \frac{A}{s}\right)\right]=\lim _{s \rightarrow 0} \frac{K A}{J s^{2}+K K_{1} s+K} \\
& \lim _{s \rightarrow 0} s y(s)=A
\end{aligned}
$$

CLID: \qquad

Problem 2-40 Points

Consider a system represented by the block diagram in Figure 2, where:

$$
G(s)=\frac{K}{s^{2}(s+1)} \quad \text { and } \quad H(s)=1
$$

a. Sketch the root locus for this system.
b. Is this system stable for any nonzero value of K ? Why or why not? (Hint: Use the root locus you just drew to support your answer.

Now, add a zero to the transfer function of $G(s)$, such that

$$
G(s)=\frac{K(s+a)}{s^{2}(s+1)} \quad \text { and } \quad H(s)=1
$$

where $0 \leq a<1$.
d. Sketch the root locus for this new system.
e. Is this system unstable for any nonzero value of K ? Why or why not? (Hint: Use the root locus you just drew to support your answer.
f. What is the steady-state error of this system in response to a ramp input?
g. Without calculating it directly, do you expect this system to have a nonzero, but finite steady-state error in response to a parabolic input? Why or why not?

Figure 2: A Unity Feedback System
a. O poles at $s=0,0,-1$

There will be 3 separate loci

$$
\sigma_{A}=\frac{\sum_{p_{j}}-\Sigma_{2 i}}{n-M}=\frac{(0+0-1)}{3}
$$

$$
\phi_{A}=\left(\frac{2 k+1}{n-m}\right) 180^{\circ} \quad k=0,1,2=\left(\frac{2 k+1}{3}\right) 180^{\circ} \quad k=0,1,2 \rightarrow \pm 60^{\circ}, 180^{\circ}
$$

$$
\text { breakaucy } \rightarrow \text { at } s \text { where } \frac{\partial k}{\partial s}=0
$$

$$
K=-s^{2}(s+1)=-s^{3} \cdot s^{2}
$$

$$
\frac{d k}{d s}=-3 s^{2}-2 s=-s\left(s+\frac{2}{3}\right) \rightarrow s=0, s=\frac{2}{3}
$$

Problem 2 (cont.)

b. For any nozero valve of K there ore dosed-loop pales in the RHP. So, the system is unstable.
c. No c part. Sorry. I should do a better job ot proofreading.
d. $\quad G(s)=\frac{k(s+a)}{s^{2}(s+1)} \quad 0<a \leqslant 1$
a poles at $s=0,0,-1$
α zero at $-a$
3 separate loci.
Asymptotes:

$$
\left.\sigma_{A}=\frac{(0+0-1)-(-a)}{2}=\frac{-1+a}{2}\right\} \text { so, somewhere hetween } 0(a=1) \text { and }-1 / 2(a=0)
$$

$$
\phi_{A}=\left(\frac{2 k+1}{2}\right) 180^{\circ} \quad k=0,1 \rightarrow \phi_{A}= \pm 90^{\circ}
$$

Problem 2 (cont.)
Brakowey Points

$$
K=\frac{-s^{2}(s+1)}{s+a} \quad \frac{a k}{d s}=\frac{-s^{3}-s^{2}}{s+a}=\frac{-3 s^{2}-2 s}{s+a}+\frac{+s^{3}+s^{2}}{(s+a)^{2}}=\frac{-s(-3 s+1)(s+a)+s\left(s^{2}+1\right)}{(s+a)^{2}}
$$

 - thar il only 1
breakenco, so this must be it

e. The doko-loyp poles fer this system ore never in the RHP, so it is always stable.

Problem 2 (cont.)
f. This is a Type 2 sylem, so its stedoy-fale cir to a ramp mut is 0 .

If you didn't remaster this, w need to.
Fud E(S) for the CLTF

$$
\begin{aligned}
& H=1, \text { so... } \\
& E=R-Y=R-G E \\
& (1+G) E=R \\
& \frac{E}{R}=\frac{1}{1+G}=
\end{aligned}
$$

$$
G=\frac{k(s+a)}{s^{2}(s+1)} \text { so } \quad \frac{E}{R}=\frac{s^{2}(s+1)}{s^{2}(s+1)+K(s+a)}
$$

$$
E=\frac{s^{2}(s+1)}{s^{2}(s+1)+k(s+a)} R
$$

$R(s)=\frac{1}{s^{2}}$ for a unit ramp upas so

$$
\begin{aligned}
& E(s)=\frac{s^{\gamma}(s+1)}{s^{2}(s+1)+k(s+a)}\left(\frac{1}{s^{7}}\right) \\
& \lim _{t \rightarrow 0} e(t)=\lim _{s \rightarrow 0} s E(s)=\frac{s(s+1)}{s^{2}(s+1)+k(s+a)}=0
\end{aligned}
$$

g. This is a Type 2 sylem, so it will hove a file stecdy-stale error in response to a parabolic input,
\qquad
Problem 3-20 Points
For the system in the block diagram in Figure 3:

$$
G_{p}(s)=\frac{10}{s(s+1)} \quad \text { and } \quad G_{c}(s)=\frac{s+a}{s+8}
$$

where a is a positive constant.
a. What is the open-loop transfer function this system?
b. What is the closed-loop transfer function this system?
c. Sketch the root locus for this system for variation in parameter a.

Figure 3: Block Diagram of a Feedback Control System
a. OLTF: $G_{C} G_{p}=\frac{10(s+a)}{s(s+1)(s+8)}$
b. CLTF: $\frac{G_{x} G_{p}}{1+G_{c} G_{p}}=\frac{10(s+a)}{s(s+1)(s+8)+10(s+a)}$
c. In its currant form, a is not in the correct "place' for sleetehing a root locus based on its variation. So, we need to manipulate the char ex. so that it is. The current char. eq. is

$$
s(s+1)(s+8)+10(s+9)=0
$$

Divide by all terms except 109

$$
\begin{aligned}
& \frac{s(s+1)(s+8)+10 s+10 a}{s(s+1)(s+8)+10 s}=0 \rightarrow 1+\frac{10 a}{s(s+1)(s+8)+10 s}=0 \\
& \rightarrow 1+\frac{109}{s\left(s^{2}+9 s+18\right)}=0 \\
& \text { Now, this in MC tam we } \\
& \text { can use for a tot locus }
\end{aligned}
$$

Problem 3 (cont.)

$$
\text { It } \frac{109}{s\left(s^{2}+9 s+18\right)}=0 \quad \text { Dative } K=10 a
$$

$$
\frac{k}{s\left(s^{2}+9 s+18\right)}
$$

O poles at $s=0, s=-3, s=-6$
The locus will have 3 separate loci

Asymptopes:

$$
\sigma_{A}=\frac{0 \cdot 3-6}{3}=-3 \quad \phi_{A}=\left(\frac{2 k+1}{3}\right) 180^{\circ} \quad k=0,1,2 \rightarrow \phi_{A}= \pm 60^{\circ}, 180^{\circ}
$$

Brakowar Point

CLID: \qquad

Possibly Useful Equations

$$
\begin{aligned}
& \bar{f}=m \bar{a} \\
& I_{0} \bar{\alpha}=\sum \bar{M}_{0} \\
& \sin (a \pm b)=\sin (a) \cos (b) \pm \cos (a) \sin (b) \\
& \cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b) \\
& e^{ \pm i \omega t}=\cos (\omega t) \pm i \sin (\omega t) \\
& x(t)=a e^{i \omega_{n} t}+b e^{-i \omega_{n} t} \\
& x(t)=a \cos \omega_{n} t+b \sin \omega_{n} t \\
& x(t)=e^{-\zeta \omega_{n} t}\left[a \cos \left(\omega_{d} t\right)+b \sin \left(\omega_{d} t\right)\right] \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \int u d v=u v-\int v d u \\
& \delta_{o c} V=\forall \sum \\
& \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u} \\
& \mathbf{y}=C \mathbf{x}+D \mathbf{u} \\
& \mathbf{x}=\boldsymbol{\Phi}(t) \mathbf{x}(0)+\int_{0}^{t} \boldsymbol{\Phi}(t-\tau) \mathbf{B u}(\tau) d \tau \\
& \mathbf{X}(s)=[s \mathbf{I}-\mathbf{A}]^{-1} \mathbf{x}(0)+[s \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B U}(s) \\
& S_{\alpha}^{T}=S_{G}^{T} S_{\alpha}^{G} \\
& T_{s}=\frac{4}{\zeta \omega_{n}} \\
& T_{r} \approx \frac{2.16 \zeta+0.60}{\omega_{n}}, \quad 0.3 \leq \zeta \leq 0.8 \\
& T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
& M_{P_{t}}=1+e^{-\zeta \pi / \sqrt{1-\zeta^{2}}} \\
& \% \text { Overshoot }=100 e^{-\zeta \pi / \sqrt{1-\zeta^{2}}} \\
& V(\omega, \zeta)=e^{-\zeta \omega t_{n}} \sqrt{[C(\omega, \zeta)]^{2}+[S(\omega, \zeta)]^{2}}
\end{aligned}
$$

Table 1: Laplace Transform Pairs

$f(t)$	$F(s)$
$f(t)=A, \forall t>0$	$\frac{A}{s}$
$f(t)=A t, \forall t>0$	$\frac{A}{s^{2}}$
$\delta(t)$	1
$e^{-a t}$	$\frac{1}{s+a}$
$\sin \omega t$	$\frac{\omega}{s+\omega^{2}}$
$\cos \omega t$	$\frac{s}{s+\omega^{2}}$
$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
$\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$	
$1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}}+\phi\right), \phi=\cos ^{-1} \zeta, \zeta<1$	$\frac{\omega_{n}^{2}}{s\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}$

