MCHE 474: Control Systems

Fall 2017 - Mid-Term 1
Tuesday, October 3

Name:

CLID: \qquad
Directions: Complete the attached problems making sure to clearly indicate your answer, show your work, and list any assumptions that you have made (with justification for them, if necessary). If you need extra space for any question, you may attach additional sheets of paper, which will be provided to you. No calculators are allowed.

Academic Honesty (just a reminder):

An essential rule in every class of the University is that all work for which a student will receive a grade or credit be entirely his or her own or be properly documented to indicate sources. When a student does not follow this rule, s / he is dishonest and s / he defeats the purpose of the course and undermines the goals of the University.
\qquad
\qquad

Problem 1-25 Points

The system in Figure 1 consists of mass, m, connected to ground through a spring of spring constant k and a damper of damping coefficient c. Until time $t=0$, the mass is held so that gravitational forces have no net effect on the system. At time $t=0$ the mass is released, so that gravitational forces do affect the system.
a. Write the equations of motion for this system.
b. What is the natural frequency?
c. What is the damping ratio?

If you were unable to solve parts a. to c. of this problem, assume the equations of motion have the form $\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=u$ in the next two parts of this question. If you were able to solve parts a. to c. of this problem, use your answer from there.

Figure 1: A Mass-Spring-Damper System
d. What is the transfer function relating the position of the mass to the gravitational force?
e. What is the time response, $x(t)$, of this system? (Hint: Consider the release of the mass at $t=0$ to be a step change in gravitational force.)
f. What is the steady-state position of the mass?
a.

$$
\begin{aligned}
& m \ddot{x}=-F_{S P}-F_{D}+m g=-k x-c x+m g \\
& m \ddot{x}+c \dot{x}+k x=m g \\
& \ddot{x}+\frac{c}{m} \dot{x}+\frac{k}{m} x=m g \\
& \ddot{x}+2 \varepsilon_{n} x+w_{n}^{2} x=m g
\end{aligned}
$$

b. $\omega_{n}^{\partial}=\frac{k}{m} \rightarrow \omega_{n}=\sqrt{\frac{k}{m}}$
c. $2\left\{\omega_{n}: \frac{c}{m} \rightarrow \Sigma=\frac{c}{2 m \omega_{n}}\right.$
d. Assume $\ddot{x}+2 \varepsilon \omega_{n} x+w_{n}^{2} x=u$

$$
(\text { in tull ep. of motion } u=m y)
$$

$$
\left[s^{2}+2\left\{\omega_{n} s+\omega_{n}^{2}\right] \bar{X}=\underline{U}\right.
$$

$$
\frac{\bar{X}}{\underline{L}}=\frac{1}{s^{2}+x_{\omega_{s}} s+\omega_{n}^{2}}
$$

Problem 1 (cont.)
e. Found $\underline{X}=\frac{1}{s^{2}+2 a_{n} s+\omega_{n}{ }^{2}} U$

A step in groutational force mean $\quad l=\frac{m g}{s}$

$$
X=\frac{m g}{s\left(s^{2}+\delta w_{n} s+w_{n}^{2}\right)}
$$

To find $x(t)$ from this, we need to tole the mene Laplace Troustom The closest form in the revise Laplace Table is:

$$
\bar{X}=\frac{\omega_{n}^{2}}{s\left(s^{2}+2 \delta \omega_{n} s+\omega_{n}^{2}\right)} \longleftarrow \quad \text { This is jut } \frac{\omega_{n}^{2}}{m g}\left(\frac{m g}{s\left(s^{2}+2\left(w_{n}\right)+\omega_{n}{ }^{2}\right.}\right)
$$

We kroner that multiplying by constants in th e Lopluce po rain is just multiplying by contort) in the tim domain, so

$$
\begin{aligned}
& x(t)=\frac{m g}{\omega_{n}^{2}}\left(L^{-1}\left[\frac{\omega_{n}^{2}}{s\left(s^{2}+2\left(\omega_{n}\right)+\omega_{n}^{2}\right)}\right]\right) e \text { ecoploce } \\
& \text { in th } \\
& x(t)= \frac{m g}{\omega_{n}^{2}}\left(1-\frac{1}{\sqrt{1-\varepsilon^{2}}} e^{- \text {(cunt }} \sin \left(\omega_{d} t+\phi\right)\right) \text { where } \\
& \omega_{d}=\omega_{1} \sqrt{1-t^{2}}, \quad \phi=\cos ^{-1}\{
\end{aligned}
$$

f. Use the final Value Thoorem to find the steacy-state vale

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s z(s)=\lim _{s \rightarrow 0} \beta\left[\frac{m g}{\delta\left(s^{2}+\delta \omega_{n} s+\omega_{n}{ }^{2}\right)}\right]=\frac{m g}{\omega_{n}{ }^{2}}=\frac{m g}{\left(\frac{k}{m}\right)}=\frac{m^{2} g}{k} \\
& x_{s s}=\frac{m^{2} g}{k}
\end{aligned}
$$

\qquad

Problem 2-25 Points

The system in Figure 2 connected to ground through a spring of spring constant k. It is also connected to input x_{d} via a damper of damping coefficient c. At time $t=0$, a unit-displacement step input is applied to x_{d}.
a. Write the equations of motion for this system.
b. Write the transfer function from the input x_{d} to the position of the mass x. If you were unable to find the equation of motion in part a., assume it is $\ddot{x}+\omega_{n}^{2} x=2 \zeta \omega_{n}\left(\dot{x}_{d}-\dot{x}\right)$.
c. What is the steady-state value of $x(t)$?
d. What is the steady-state value of the tracking error, $x_{d}(t)-x(t)$?

Figure 2: A Mass-spring System with Damper to Input
a.

b. Using $\ddot{x}+22 \omega_{n} \dot{x}+\omega_{n}^{2} x=2 \varepsilon \omega_{n} \dot{x} d$ form

$$
\left[S^{2}+2\left\{\omega_{n} s+w_{n}^{2}\right] \underline{X}=\left[2\left\{\omega_{n} s\right] \underline{X}_{d}\right.\right.
$$

$$
\frac{\bar{X}}{\overline{X_{d}}}=\frac{2\left\{\omega_{n} s\right.}{s^{2}+2\left\{\omega_{n} s+\omega_{n}^{2}\right.}
$$

Problem 2 (cont.)
c.

$$
\begin{aligned}
& \bar{X}=\left[\frac{2\left\{\omega_{n} s\right.}{s^{2}+2\left\{\omega_{n}\right)+\omega_{n}^{2}}\right] X_{d} \\
& \bar{X}=\frac{\partial\left\{\omega_{n} s\right.}{s\left(s^{2}+\partial\left\{\omega_{n} s+\omega_{n}^{2}\right)\right.}
\end{aligned}
$$

Use the Final Value Theorem to find the stecay-state position of $x(t)$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s x(s) \\
& \lim _{s \rightarrow 0} s x(s)=\$\left[\frac{\partial \sin s}{s\left(s^{2}+\partial \operatorname{con}_{n} s+\omega_{n}^{2}\right)}\right]=0
\end{aligned}
$$

$\leftarrow x$ retums to its equal. position as $+\rightarrow \infty$
d. We wart to un the Final Value Therm again to find $e(t)$ as $t \rightarrow \infty$ Intuitively, we know that for the unit-step upput, given $\lim _{t \rightarrow \infty} x(t)=0$, the stecoy state error should he 1 , since $x_{d}(\infty)=1$

$$
\begin{aligned}
& E=X_{d}-X=\left[1-\frac{\partial\left\{\omega_{n} s\right.}{s^{2}-2\left(\omega_{n}\right)+w_{-}}\right] X_{d}=\left[\frac{s^{2}+w_{n}^{2}}{s^{2}+\partial\left\{m_{n} s+\omega_{n}^{2}\right.}\right] X_{d} \\
& \text { If } X d(s)=\frac{1}{s}, E=\frac{s^{2}+w_{n}^{2}}{s\left(s^{2}+\partial\left\{\omega_{n} s+\omega_{n}^{2}\right)\right.} \\
& \lim _{t \rightarrow \infty} \rho(t)=\lim _{s \rightarrow 0} s E(s)=s\left[\frac{s^{2}+w_{n}^{2}}{s\left(s^{2}+2\left(\omega_{n}\right)+\omega_{n}^{2}\right)}\right]=\frac{\omega_{n}^{2}}{\omega_{n}^{2}}=1
\end{aligned}
$$

As our wutution predicted
\qquad

Problem 3-50 Points

The block diagram in Figure 3 represents a position control system where:

$$
G_{p}(s)=\frac{1}{s(J s+b)}
$$

and K is a constant.
a. What is the open-loop transfer function this system?
b. What is the time response, $y(t)$, of the open-loop system to an impulse input (ie. $r(t)=\delta(t)) ?$
c. What is the closed-loop transfer function this system?
d. What is the natural frequency of the closed-loop system?
e. What is the damping ratio of the closed-loop system?
f. For a fixed natural frequency, what affects would increasing the damping have on the system response? If possible, provide support for your analysis.
g. For a ramp input, $r(t)=A t, \forall t \geq 0$:
i. Defining tracking error as $r(t)-y(t)$, what is the steady-state error of the openloop system to this input?
ii. What is the steady-state error for the closed-loop system to this input?
iii. For the closed-loop system, how should K be chosen to limit this error?

Figure 3: Block Diagram of a Position Control System
a. In the open-loop case there is no feoobeck, so the bock diagram lacks lie:

$$
\frac{4}{R}=\frac{x}{s\left(\frac{s}{s}+b\right)}
$$

Problem 3 (cont.)
b. To find the time sejpanse, write

$$
\begin{aligned}
\varphi & =\frac{k}{s(J s+b)} R \\
F r r(t) & =\delta(t), R(s)=1, s o
\end{aligned}
$$

$Y(s)=\frac{K}{s(J s+b)}$ cescrines the response to the impulse input
To find $y(t)$ us the Inverse Loplace Transtam
In this case, we need to ute partial fraction expansion to notch o form available in the lookup tables

$$
\begin{aligned}
& y(s)=\frac{a_{1}}{s}+\frac{a_{2}}{J s+b} \\
& a_{1}=\left.s\left(\frac{k}{s(J s+b)}\right)\right|_{s=0}=\frac{k}{b} \\
& a_{a}=(J s+b)\left(\frac{k}{s(J s+b)}\right)_{s=\frac{-b}{s}}=\frac{k}{\left(-\frac{b}{J}\right)}=\frac{-k J}{b} \\
& Y(s)=\frac{k / b}{s}+\frac{(-k J / b)}{J s+b}=\frac{(k / b)}{s}-\frac{k / b}{s+b / J}
\end{aligned}
$$

So $y(t)=\frac{k}{b}\left[1-e^{-b / s t}\right]$

Problem 3 (cont.)
c. For the duseo-loop system

$$
y=\underbrace{\left[\frac{K}{S(J S+1 b)}\right] E}_{\text {Gall this } G} \text { and } E=R \cdot Y
$$

$$
\begin{aligned}
& Y=G E=G(R-Y) \\
& (1+G) Y=G R \longrightarrow \frac{U}{R}=\frac{G}{1+G} \quad\left\{\begin{array}{l}
\text { We could hove skinned drectly } \\
\text { here if we vermemhered this tom }
\end{array}\right. \\
& \frac{U}{R}=\frac{K}{s\left(J_{s}+b\right)+K}=\frac{K}{J_{s}^{2}+b s+K}
\end{aligned}
$$

d. Dividing by $J n$ numerator and denominator

$$
\frac{u}{R}=\frac{k / J}{s^{2}+\frac{b}{s} s+k / J}=\frac{\omega_{n}^{2}}{s^{2}+\partial L w_{n} s+w_{n}^{2}}
$$

So, $\omega_{n}^{\partial}=\frac{k}{J} \rightarrow \omega_{n}=\sqrt{\frac{k}{J}}$
e. And, $2 \varepsilon_{n}=\frac{b}{J} \rightarrow \quad \Sigma=\frac{b}{\partial J w_{n}}$
f. Increasing the comply rato will- reedce overshoot $\rightarrow P O=100 e^{-\{\pi / \sqrt{1.12}} \rightarrow \operatorname{lag}$ ar $\{\rightarrow$ smaller $P O$

g. $r(t)=t, \forall t>0 \rightarrow R(s)=\frac{t}{s^{2}}$
i. $E=R-y$ and $y=\left[\frac{K}{s(J s+b)}\right] R \rightarrow E=\left[\frac{s(J s+b)-K}{s(J s+b)}\right] R=$

Use the Final Valve Theorem

$$
\begin{aligned}
\lim _{t \rightarrow \infty} e(t) & =\lim _{s \rightarrow 0} s E(s) \\
\lim _{s \rightarrow 0} s E(s) & =\lim _{s \rightarrow 0} \notin\left\{\frac{J_{s}^{2}+b_{s}-k}{\left(J_{s}^{2}+b_{s}\right) s^{\mathscr{D}}}\right]=\infty
\end{aligned}
$$

Problem 3 (cont.)
ii. For the closed-loop systern, we found

$$
\begin{aligned}
& \frac{U}{R}=\frac{K}{J s^{2}+b s+K} \rightarrow Y=\frac{K}{J_{s}^{2}+b s+k} R \\
& E=R-Y=R-\left[\frac{K}{J_{s}^{2}+b s+k}\right] R=\left\lfloor\frac{J_{s}^{2}+b s}{J_{s}+b s+K}\right] R=\left[\frac{J_{s}^{2}+b s}{J_{s}^{2}+b s+K}\right]\left[\frac{1}{s^{2}}\right]
\end{aligned}
$$

To find the steciy-state error, use the Final Valve Thewem:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s) \\
& \lim _{s \rightarrow 0} s E(s)=s\left[\frac{J_{s}^{2}+b s}{s^{2}\left(J_{s}^{2}+b s+k\right)}\right]=\frac{s\left(J_{s}+b\right)}{s\left(J_{s}^{2}+b s+k\right)}=\frac{b}{k}
\end{aligned}
$$

iii. To minimize error for the closeo-loop system, K should he lane so that $e(\infty)=\frac{b}{k}$ is small.

CLID: \qquad

Possibly Useful Equations

$$
\begin{array}{c|c}
\bar{f}=m \bar{a} & \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u} \\
\mathbf{y}=C \mathbf{x}+D \mathbf{u} \\
I_{0} \bar{\alpha}=\sum \bar{M}_{0} \\
\sin (a \pm b)=\sin (a) \cos (b) \pm \cos (a) \sin (b) & \begin{array}{c}
\mathbf{x}=\mathbf{\Phi}(t) \mathbf{x}(0)+\int_{0}^{t} \mathbf{\Phi}(t-\tau) \mathbf{B u}(\tau) d \tau \\
\cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b)
\end{array} \\
e^{ \pm i \omega t}=\cos (\omega t) \pm i \sin (\omega t) \\
x(t)=a e^{i \omega_{n} t}+b e^{-i \omega_{n} t} & \left.S_{s}-\mathbf{A}\right]^{-1} \mathbf{x}(0)+[s \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B U}(s) \\
x(t)=a \cos \omega_{n} t+b \sin \omega_{n} t & S_{\alpha}^{T}=S_{G}^{T} S_{\alpha}^{G} \\
x(t)=e^{-\zeta \omega_{n} t}\left[a \cos \left(\omega_{d} t\right)+b \sin \left(\omega_{d} t\right)\right] \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & T_{s}=\frac{4}{\zeta \omega_{n}} \\
\int u d v=u v-\int v d u \\
T_{r} \approx \frac{2.16 \zeta+0.60}{\omega_{n}}, \quad 0.3 \leq \zeta \leq 0.8 \\
\delta_{o c} V=\forall \sum & T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
M_{P_{t}}=1+e^{-\zeta \pi / \sqrt{1-\zeta^{2}}} \\
\% \mathrm{Overshoot}=100 e^{-\zeta \pi / \sqrt{1-\zeta^{2}}} \\
x(\omega, \zeta)=e^{-\zeta \omega t_{n}} \sqrt{[C(\omega, \zeta)]^{2}+[S(\omega, \zeta)]^{2}}
\end{array}
$$

Table 1: Laplace Transform Pairs

$f(t)$	$F(s)$
$f(t)=A, \forall t>0$	$\frac{A}{s}$
$f(t)=A t, \forall t>0$	$\frac{A}{s^{2}}$
$\delta(t)$	1
$e^{-a t}$	$\frac{1}{s+a}$
$\sin \omega t$	$\frac{\omega}{s+\omega^{2}}$
$\cos \omega t$	$\frac{s}{s+\omega^{2}}$
$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
$\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$	
$1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}}+\phi\right), \phi=\cos ^{-1} \zeta, \zeta<1$	$\frac{\omega_{n}^{2}}{s\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}$

