MCHE 474: Control Systems

Mid-Term Exam – Thursday, November 9th

Covers Chapter 2 through Chapter 7, with focus on Chapters 5-7, including (but not limited to):

Chapter 2

- Modeling and linearization of physical systems
- The Laplace Transform & Inverse Laplace Transform
 - Use to solve ODEs
 - Use to write the transfer function of linear systems
 - Use for systems with nonzero initial conditions
- Block diagram models
 - Block diagram algebra and reduction
 - Be able to draw a representative block diagram for a system (like the DC motor example we worked in class)
 - Know common block diagram forms

Chapter 3

- State variable representation of systems
- The state differential equations and state-space form
 - Be able to write system equations in this form
 - Know the general matrix form and functions of each matrix
- State Transition matrix

Chapter 4

- Differences between open and closed-loop systems
- Error signal analysis
 - Sensitivity function
 - Complementary loop function
 - The relationship between these two functions
 - What we need from the controller to limit the effects of:
 - → disturbances,
 - → measurement noise, or
 - → reference inputs
- Sensitivity to parmeter variations
- Analysis of steady-state error (Know the Final-value Theorem)

Chapter 5

- Know the test inputs
- Know of the effects of changing natural frequency and damping on:
 - Rise time
 - Settling time
 - Overshoot
- System Types and their relationship to steady-state error
- Sketching system responses based on natural frequency and damping ratio

Chapter 6

- System stability
- Determine stability from pole locations

Chapter 7

- The magnitude and angle conditions of the Root Locus
- Sketching Root Loci
- Meaning of pole locations on the Root Loci
- Selection of parameters using the Root Locus
- PID Controller
 - Equations
 - Effects of each gain
 - Tuning methods
 - * "Manual"
 - * Ziegler-Nichols (Open-loop and Closed-loop methods)
 - Tuning methods