

Machine Learning Introduction MCHE 470: Robotics

Dr. Joshua Vaughan

Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

What is Machine Learning?

- Applying some knowledge about the past to:
 - Analyze the present
 - Predict the future

Example Applications

- Classification
 - An object is red and round, is it an apple?
 - An object has X-like properties, is it X ?
- Text categorization
 - Spam filtering
 - Grammar guides
 - "Threat" analysis
 - Author/Plagiarism detection
- Recommendation engines (iTunes, Netflix, etc.)
- Face recognition
- Election/sports analysis (Moneyball, Nate Silver)
- Diagnostics, medical and otherwise

Classification

- *y* : variable for prediction (output)
- x : variable for observation (input)
- Training Data = Collection of (x, y) pairs
- Machine Learning:
 - Given the training data, learn a mapping function f(x)=y that can map input variables to output variables

Features

- Input, x, is a vector of features
- Feature set is usually selected by a human
- Machine Learning algorithm:
 - How important is each feature to categorization?
 - Generate vector of these weights

Features (cont.)

- Some art to the selection of these
- Must be in a machine-readable form
- Often iterate through different choices
- Example features for text classification:
 - average word length
 - punctuation frequency
 - average sentence length
 - sentence structure

- ...

Supervised-Learning

- Define some "training" data (which contains the, usually human-defined, "truth")
- Develop the weighting vector and create classifications using this data
- Applying the weighting and classifications to unknown data
- Goal is often *prediction* of unknown/unmeasured features

Unsupervised Learning

- Need to learn from data alone (no training)
- No human interaction (so cheaper, humans are expensive)
- Goal is most often categorization of existing data

Common Problems

- Overfitting:
 - Learning too specific to "training" data
 - Doesn't allow generalization
 - Can result from improper feature selection
- Feature dominance
 - Weighting factors chosen such that one feature dominates
 - Most algorithms have methods to prevent one feature from dominating

k-Nearest Neighbor

"Distance"-based unsupervised classification

k-Nearest Neighbor (k=3)

Compute the "distance" to k-nearest of each set

k-Nearest Neighbor (k=3)

• Categorize in "nearest" set

k-Nearest Neighbor (k=3)

• Categorize in "nearest" set

Problems?

- Can become computationally "expensive" with large data sets
- One dimension can dominate (normalize)

Improvements?

- Iterate over different values of k
 - Improve classification
 - Check of classification
- Use differences in distance as "quality" of fit

Classification not known a priori

Pick k "centers"

Associate each point with nearest center

- New center is center of those associated points

Problems

- How many k (categories)?
- Data "clusters" need to be similar size
- Needs iterative processing (can't run just once)
- No guarantee of convergence

k-Means, "wrong" k

• Human supervisor can catch

k-Means Doubling

Two initial centers can converge to same category

k-Means Outliers

Center can converge to outlier data

Other Challenges

How to categorize this?

