

Machine Vision Introduction MCHE 470: Robotics

Dr. Joshua Vaughan

Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

Why Machine Vision?

• Or... what can machine vision do for us?

Extremely Multi-disciplinary

- Sensor Design
- Filter Design
- Optics

. . .

- Artificial Intelligence
- Linear Algebra

Doing all of that stuff is hard.

Doing all of that stuff is hard.

Are A & B the same?

Are A & B the same?

Which is longer?

Which is longer?

Which is bigger?

Which is bigger?

A Short Photography School

What affects exposure?

- ISO: How sensitive the sensor is to light
- Aperture: How big the lens opening is
- Shutter Speed: How long the shutter stays open

Depth of Field

- How much of an image is in focus
 - Large Aperture → Small Depth of Field
 - Small Aperture → Large Depth of Field

Aperture Affect on DoF

Shallow Depth of Field

Large Depth of Field

Why not just minimize Aperture?

- Let's less light through
 - How does that affect exposure?
- Diffraction

Digital Imaging

• How does a digital sensor see this?

Digital Imaging

• How does a digital sensor see this?

Digital Imaging

• How does a digital sensor see this?

From Another Angle

Color Space/Models - RGB

- One way to describe an images
- How much Red, Green, and Blue exist
 - Any point is represented by the mix of RGB at that location R = 1/5

An Example

Red Channel

Blue Channel

Green Channel

In the Computer

• RGB as an array, size H x W x 3

Often (0,0)

	col	um	n -									3				
OW	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	R				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91			•		
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	1 G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91			
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92			B
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	6
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	e
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.79	0.85	2
•	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
			0.91	0.94	0.89	0.49	0.33	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93	
			0.51	0.54	0.05	0.15	0.50	0.00	0.15	0.12	0.05	0.75	0.55	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

HSV/HSL Color Space/Model

- Hue, Saturation, and Value
- Hue, Saturation, and Lightness

- Slightly Different

HSL

- Hue
 - Red Odeg
 - Green 120deg
 - Blue 240deg
 - Red 360deg
- Saturation
 - "Pure" Colors 0.5
- Lightness
 - Black 0
 - White 1

30

HSV

- Hue
 - Red Odeg
 - Green 120deg
 - Blue 240deg
 - Red 360deg
- Saturation
 - "Pure" Colors 1
- Value
 - Black 0
 - White 1

Other Color Spaces/Models

• CMYK

- Cyan, Magenta, Yellow, Black
- Most often used in printing
- YCbCr
 - Luminance, Blue-Difference Chroma, Red-Difference-Chroma
 - Used for TV
- Many others...

Filtering

- In machine vision: used to make the image easier to process
- In Instagram: used to make your boring picture more interesting

Blurring Makes the Image Clearer?

Blurring Makes the Image Clearer?

Once Masked for White

Once Masked for White

How to Blur?

- Box Filter (a type of linear filter)
 - Make every pixel the average of itself and those around it
 - Removes "sharp" features
 - Form:

1/9	1	1	1
	1	1	1
	1	1	1

Example Box Filter Process

33	68	47	44	96	78	46	63	10	66
88	34	84	67	54	55	56	1	65	83
56	98	65	72	80	11	30	17	43	82
46	89	24	50	52	37	0	5	48	67
85	49	82	17	6	93	98	39	62	92
89	35	58	81	34	84	36	29	60	70
45	81	6	88	32	16	65	75	86	22
98	16	49	33	33	35	48	55	47	37
14	39	20	97	36	11	23	77	66	51
7	94	22	28	91	21	48	11	46	11

1/9 * (73+50+66+19+73+27+22+56+9) = 44

Aside: How could we sharpen?

 Sharpening makes differences from local average more apparent