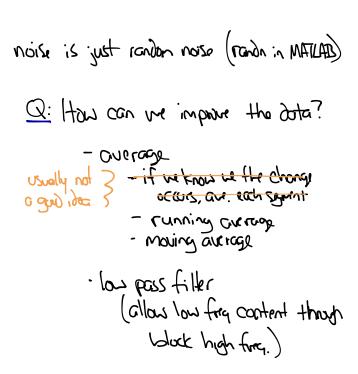

Sensor Processing


Q: What are some possible problems with sensors?

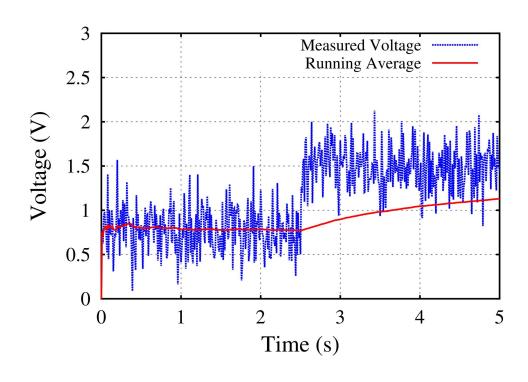
- noise
- update rate
- accuracy and precision

Let's look at how we can deal with sensor noise.

Example: Piecewise constant voltage signal with measurement noise

Running Average:

toke the average of the data up to averant time Easy to do after data is collected


Q: How can we do in "real-time"?

Cots look of the across of a grains solies:

$$M_1 = \frac{1}{1} | 1 = 1$$
 $M_2 = \frac{1}{2} (| 1 + | 2 + | 3 + | 4$

Running Average (cont)

Q: How can we implement this (smorthy)?

- Q: What are the problems with this?

 -too heavily weights past values

 (connot react to changes quickly)
- Q: How can we fix this problem? conly overage the bost N value

Moving Average:

Take the average of the last N measurements:

estimate: =
$$\frac{1}{N}$$
 (\(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}} \) = \(\frac{1}{2} \): How con we do in "real-time"?

"Strict" Moving average

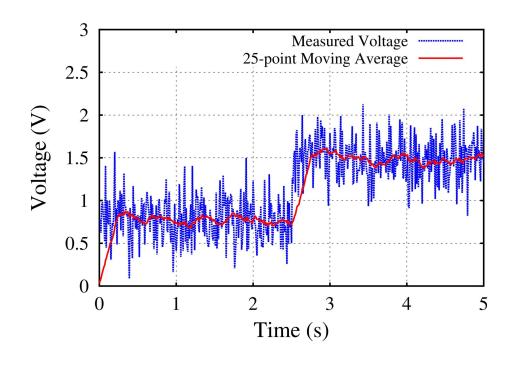
· keep on oney of N values

counter ++

· of each new measurement, remove the oldest and reackulate the array Orray[N] - filler with zeros (or other initial guess) initially counter = 1 loop {

_____ shorthour for counter: counter + 1

Exponential Moving Average (actually easier to compute)

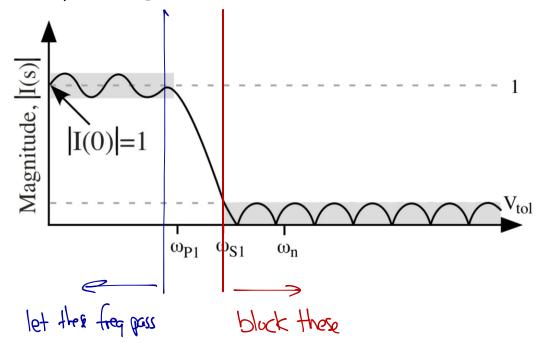

estimate: =
$$\frac{1}{N}$$
 (Yin + Yin + Yi)

assure all one equal = estimate

remove I value from all estimate (to represent about data point)

make now orthode =
$$(1-\frac{1}{N})$$
 estimate + $\frac{1}{N}$ (measurement) = $\frac{1}{N}$ -point overege

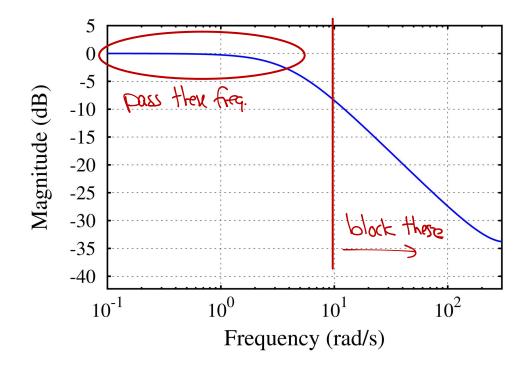
Q: What's different? weighting of all values

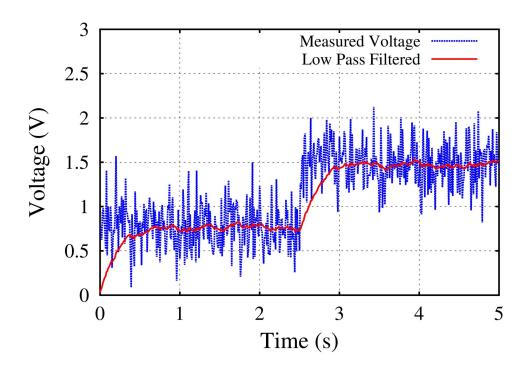

Q: Probbns?

-Still slow to react to changes
(this may be good in some circumstances)
- doesn't use any knowledge of
signal

(no generally have some idea of) what the signal will be

Lowpass filter


only allow signals with freq. loss than we to pass



Noise is typically higher freq. than the data.

Lowpass filter (cont)

No man't go into the design of these. Most software backages have them built-in, or make then early

Q: Problems?

- (by dosign) does not rack to rapid changes
- Usos some into downt system, but we can do bother.