
PID Tuning

1st method:

Ziegler-Nichols Method

Ziegler-Nichols Method (cont)

2nd Method:

PID Implementation

output_type PID(kp,ki,kd){

 get current time

 deltaT = last time - current time

 compute:

 current error = desired state - measured states

 error sum = last error sum + (current error * deltaT)

 error derivative = (current error - last error) / deltaT

 output = (kp * current error) + (kd * error derivative)

 + (ki * error sum)

 last time = current time

 last error sum = error sum

 return output

}

From: http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction

Sample Time - The PID algorithm functions best if it is evaluated at a regular

interval. If the algorithm is aware of this interval, we can also simplify some of

the internal math.

Derivative Kick - Not the biggest deal, but easy to get rid of, so we’re going to

do just that.

On-The-Fly Tuning Changes - A good PID algorithm is one where tuning

parameters can be changed without jolting the internal workings.

Reset Windup Mitigation -We’ll go into what Reset Windup is, and implement a

solution with side benefits

On/Off (Auto/Manual) - In most applications, there is a desire to sometimes

turn off the PID controller and adjust the output by hand, without the controller

interfering

Initialization - When the controller first turns on, we want a “bumpless

transfer.” That is, we don’t want the output to suddenly jerk to some new value

Controller Direction - This last one isn’t a change in the name of robustness

per se. it’s designed to ensure that the user enters tuning parameters with the

correct sign.

PID Implementation Concerns

PID Implementation Concerns - Sample Time

define desired sample time

output_type PID(kp,ki,kd){

 get current time

 deltaT = last time - current time

 if (deltaT >= desired sample time){

 compute:

 current error = desired state - measured states

 error sum = last error sum + (current error * sample time)

 error derivative = (current error - last error) / sample time

 output = (kp * current error) + (kd * error derivative)

 + (ki * error sum)

 last time = current time

 last error sum = error sum

 return output

 }

 else {

 don't do anything

 }

}

