

Problem Understanding MCHE 470 – Fall 2013

Dr. Joshua Vaughan

Rougeou 225

joshua.vaughan@lousiana.edu

@Doc_Vaughan

Problem Understanding

- Who is the customer?
 - end-user?
 - reseller?
 - sales team?
 - ...???

• Who are the customers?

 These customers will have some conflicting needs/ demands

Design Change Comparison

The House of Quality

Using the House of Quality

- Look for:
 - Blank rows

Using the House of Quality

- Look for:
 - Blank rows

Customer Need is not being addressed

Blank columns

Using the House of Quality

- Look for:
 - Blank rows

Customer Need is not being addressed

Blank columns

Addressing a Customer Need that does not exist

	Strong = 9Medium = 3Weak = 1		Engineering Characteristics				
		5				Δ	
	Customer Requirements	6					
		9				Δ	
		2		Δ			
		1			Δ		Δ

Technical Importance(s)

- We can get numbers
- Be careful to not use *only* the numbers as justification for design decisions!
- Absolute Importance Sum along a column

 $\sum_{\text{col}} (\text{relationship ranking} \times \text{customer importance})$

- Relative Importance
 - Absolute importance of Eng. Char / Sum of absolute importances

	Strong = 9Medium = 3Weak = 1		Engineering Characteristics					
	Customer Requirements	9				Δ		
		2		Δ				
					Δ		Δ	sum
ĺ	Absolute Important	132	92	34	23	73	354	

	Strong = 9Medium = 3Weak = 1		Engineering Characteristics					
	Customer Requirements					Δ		
						Δ		
		2		Δ				
		1		۲	Δ		Δ	sum
	Absolute Importance Relative Importance		132	92	34	23	73	354
			0.37	0.26	0.10	0.06	0.21	

Design Specifications

- Numerical targets or constraints that all possible concepts must meet
- Derived from:
 - Standards
 - Customer requirements
 - Engineering Analysis

Design Specifications (cont.)

- Typical categories include:
 - Geometric
 - Kinematics
 - Dynamics
 - Energy
 - Costs
 - Material
 - Signals
 - Safety

- Ergonomics
- Schedules
- Assembly
- Transportation
- Operation
- Quality Control
- Recycling

The Spec. Sheet

			Issued: mm/dd/yy		
		For: PRODUCT NAME	Page x of	Page x of N	
Changes	D/W	Requirements	Resp.	Source	
ate of last change.	Demand or Wish?	Requirements, sorted by category.	ho is responsible?	Vhat is the source this requirement?	
- Δ -			⊢ ≤ −		

Function Trees

 Break large, difficult design process into many small easy ones

Continue until the sub-functions are almost trivial

Function Trees (cont.)

• Functions are actions the concept is capable of doing

- Functions are NOT
 - Specific solutions *e.g.* "Move arm 180 deg."
 - Constraints or specs e.g. "Be smaller than..."

Morphological Charts

