
MicroPython
Introduction (cont.)

MCHE 201 – Spring 2019

Dr. Joshua Vaughan
Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

mailto:joshua.vaughan@lousiana.edu?subject=
http://twitter.com/doc_vaughan

In-class Exercise 7
• Attach a potentiometer
• Have the servo angle track the angle of the

potentiometer

!2

In-class Exercise 7 Hardware

!3

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

In-class Exercise 7 Setup
import pyb # import the pyboard module
import time # import the time module

Here, we will use the X1 position on the pyboard
servo1 = pyb.Servo(1)

Define constants for the min and max servo angles
MAX_SERVO_ANGLE = 45
MIN_SERVO_ANGLE = -45

Set up the ADC for the potentiometer
pot_adc = pyb.ADC(pyb.Pin("Y11"))

!4

In-class Exercise 7 Angle Conversion
def potADCtoServoAngle(ADC_value):
 """ This function converts a potentiometer reading of 0-4095 to an angle
 between MIN_SERVO_ANGLE and MAX_SERVO_ANGLE, using the global
 representation for those angle extremes

 The middle of the potentiometer range, 2048, should map to 0deg
 The max. of the range, 4095, should map to MAX_SERVO_ANGLE
 The min. of the range, 0, should map to MIN_SERVO_ANGLE

 Inputs:
 ADC_value : a number between 0 and 4095 representing a reading
 from the potentiometer

 Returns:
 angle : The angle to move the servo to to match the potentiometer angle
 """

 # define the slope and intercept for the line mapping ADC_value to angle
 slope = (MAX_SERVO_ANGLE - MIN_SERVO_ANGLE) / 4095
 intercept = -slope * 2048

 # Now, calculate the angle output based on that linear function
 angle = slope * ADC_value + intercept

 return angle

!5

In-class Exercise 7 Main Loop
Now read the pot and move the servo every 10ms, forever
while (True):
 # Read the value of the potentiometer.
 # It should be in the range 0-4095
 pot_value = pot_adc.read()

 desired_angle = potADCtoServoAngle(pot_value)

 # print out the values, nicely formatted
 print("The ADC value is {:d}.".format(pot_value))
 print("Moving to {:.2f} deg".format(desired_angle))

 servo1.angle(desired_angle)

 # Wait 10ms before looping again
 time.sleep_ms(10)

!6

The MCHE201 Board

!7

}
M

ot
or

 O
ut

pu
ts

}
Analog Inputs

}
Digital I/O

}Solenoid Outputs

Se
rv

o
O

ut
pu

ts

Buzzer12VDC Input

MCHE201 Board Analog Inputs
• Pin assignments match code you've learned already

• All resistors are included on-board… Just connect
the sensor itself

• Wiring diagrams are included in GitHub repository for
each sensor

!8

MCHE201 Board – Potentiometer

!9

1
1

5
5

10
10

15
15

A
B

C
D

E
F

G
H

I
J

MCHE201 Board – Soft Pot.

!10

1
1

5
5

10
10

A
B

C
D

E
F

G
H

I
J

MCHE201 Board – Flex Sensor

!11

1
1

5
5

10
10

15
15

A
B

C
D

E
F

G
H

I
J

MCHE201 Board – FSR

!12

1
1

5
5

10
10

15
15

A
B

C
D

E
F

G
H

I
J

MCHE201 Board – Servomotors

!13

Wired as Servo 1

MCHE201 Board – Servomotors

!13

Wired as Servo 1 Wired as Servo 2

Wired as Servo 3 Wired as Servo 4

Controlling Timing
Import time module
import time

sleep for 1 second
time.sleep(1)

sleep for 500 milliseconds
time.sleep_ms(500)

sleep for 10 microseconds
time.sleep_us(10)

!14

Controlling Timing
Import time module
import time

sleep for 1 second
time.sleep(1)

sleep for 500 milliseconds
time.sleep_ms(500)

sleep for 10 microseconds
time.sleep_us(10)

!14

The time.sleep
family of functions

sleep the processor.

Time Comparison
• Get the current time (to the ms or µs) using
time.ticks_ms() or time.ticks_us()

• Do time math using time.ticks_add() and
time.ticks_diff()
-time.ticks_add(ticks, delta) calculates
ticks + delta # Units must match

-time.ticks_diff(ticks1, ticks2) calculates
ticks1 - ticks2

• More info at: http://docs.micropython.org/en/
latest/pyboard/library/utime.html

!15

http://docs.micropython.org/en/latest/pyboard/library/utime.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html

In-class Exercise 8
• Connect a pushbutton

• Turn on the green LED

• When the pushbutton is pressed
- Turn on the red LED
- Turn off the green LED

• When the button is pressed again
- Turn off the red LED
- Turn on the green LED
- Print the time elapsed between button presses to the

REPL

!16

In-class Exercise 9
• Connect a pushbutton
• Turn on the green LED
• Once the button is pressed the first time, turn off all

LEDs.
• Then, turn on 1 LED every 1s until the button is

pressed again
• When the button is pressed again, print the time

elapsed between button presses to the REPL
• If more than 5s elapses:

- Print "You took too long!!!" to the REPL
- Turn on only the green LED again

!17

MCHE201 Track Connections

!18

MCHE201 Track Start Signal
• Will be closed for the 30-second trial time, open

otherwise

• Works just like holding down a pushbutton for 30
seconds.

• The 120VAC outlet is always on

!19

Reading the MCHE201 Start Signal

!20

The track start signal behaves
just like a pushbutton being
held down for 30 seconds.

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

Connected to the Banana
Plugs on the Track

Reading the MCHE201 Start Signal

!21

The track start signal behaves
just like a pushbutton being
held down for 30 seconds.

Connected to the Banana
Plugs on the Track

One way to Sense Start
Assign the input pin to variable input_pin
We set it up as an input with a pulldown resistor
input_pin = pyb.Pin("X6", pyb.Pin.IN, pull=pyb.Pin.PULL_DOWN)

This will loop forever, checking the button every 10ms
while (True):
 input_state = input_pin.value() # read the state of the input

 if (input_state):
 print("The start button is pressed.)
 # Main code could be here

 # If what runs here is less than 30 sec. long, you'll need to
 # account for that condition. If not, then the start signal

 # will still be on when this part of your code finishes. So, it
 # will still be True and therefore start running again.

 else:
 print("The start button is not pressed.")

 time.sleep_ms(10) # Sleep 10 milliseconds (0.01s)

!22

A More "Professional" Way
• Use Interrupts:

- "Run this function immediately when X happens"
- Functions need to:

✦be short/fast, and
✦create no new objects

•https://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design/tree/Spring-2019/MicroPython/
pyboard%20start%20button%20interrupt

• More info:
-https://micropython.org/resources/docs/en/latest/
library/machine.Pin.html#machine.Pin.irq

-https://micropython.org/resources/docs/en/latest/
reference/isr_rules.html

!23

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/pyboard%20start%20button%20interrupt
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/pyboard%20start%20button%20interrupt
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/pyboard%20start%20button%20interrupt
https://micropython.org/resources/docs/en/latest/library/machine.Pin.html#machine.Pin.irq
https://micropython.org/resources/docs/en/latest/library/machine.Pin.html#machine.Pin.irq
https://micropython.org/resources/docs/en/latest/reference/isr_rules.html
https://micropython.org/resources/docs/en/latest/reference/isr_rules.html

In-class Exercise 10
• Connect

- a pushbutton
- the servomotor

• Start the servo at 0 degrees

• When the pushbutton is pressed:
- move the servo to 30 degrees
- pause 1 second
- move the servo back to 0 degrees

• Only allow this to happen once per 30 seconds

!24

IR Sensor Hardware Setup

!25

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

MCHE201 Board – IR Sensor

!26

1
1

5
5

10
10

A
B

C
D

E
F

G
H

I
J

IR Sensor Code
• It’s just an analog sensor

• Distance varies between
- 3.1V at 4cm, and
- 0.3V at 30cm

• There is a nonlinear relationship between these
values

!27

Outside of this range,
you can’t trust the

values

What will happen?
import pyb # import the pyboard module
import time # import the time module

counter = 0 # Set the initial value of the counter

while (True):
 value = 1 / (10 - counter)

 print("Value = {:.4f}".format(value))

 # Sleep 1s
 time.sleep(1)

 # increment the counter by 1
 counter = counter + 1

!28

Try… Except

If there is an
exception
(error) here,
then…

counter = 0 # Set the initial value of the counter

try:
 while (True):
 value = 1 / (10 - counter)

 print("Things are running smoothly...")
 print("Value = {:.4f}".format(value))

 # Sleep 1s
 time.sleep(1)

 # increment the counter by 1
 counter = counter + 1

except: # This with catch the exception
 print("Things are not so smooth anymore.")

!29

Try… Except

This will run.

If there is an
exception
(error) here,
then…

counter = 0 # Set the initial value of the counter

try:
 while (True):
 value = 1 / (10 - counter)

 print("Things are running smoothly...")
 print("Value = {:.4f}".format(value))

 # Sleep 1s
 time.sleep(1)

 # increment the counter by 1
 counter = counter + 1

except: # This with catch the exception
 print("Things are not so smooth anymore.")

!29

Try… Except… Finally
try:
 # Stuff to do if all is well

except: # This with catch the exception
 # Stuff to do if there is an exception

finally:
 # Stuff to do when try finishes
 # or there is an exception

!30

KEY POINT!!!
• If you are controlling hardware, it is your

responsibility to ensure it stops safely if errors occur

• For example:
- Wrap motor control code in try… except… that would

stop the motor if any syntax errors occur
- Wrap linear actuator code similarly
- Have a master "finally" that turns off all actuators if

exceptions occur

!31

MCHE201 Board – Motor Control
• Separate microcontroller handles low-level motor

control
• pyboard and it communicate over i2c

!32

Installation of MCHE201 Libraries
• Go to: https://github.com/DocVaughan/
MCHE201_Controller

• Download all the .py files from there

• Copy them to the pyboard PYBFLASH (or micro-SD
card if you are running your code from there)

!33

https://github.com/DocVaughan/MCHE201_Controller
https://github.com/DocVaughan/MCHE201_Controller
https://github.com/DocVaughan/MCHE201_Controller

PYBLASH after install

!34

Initialization in MicroPython
We'll use the machine module i2c implementation.
import machine

Initialize communication with the motor driver
i2c = machine.I2C(scl=machine.Pin("X9"),
 sda=machine.Pin("X10"))

!35

This is needed for all
MCHE201 controller board
scripts and should never

need to be changed.

DC Motor Hardware Setup
• Motor can be plugged into DC1 or DC2
• Do NOT let conductors on the leads touch

!36

DC Motor 1

DC Motor 2

12VDC Input

AVOID!!! – You will break the board.
• Stripping too much wire from the motor connections

• Keeping stalled motors powered

• Reversing a motor without stopping it first

!37

Entirely-avoidable Carnage

!38

Entirely-avoidable Carnage

!38

Entirely-avoidable Carnage

!38

$418.95

DC Motor Setup and Core Functions
We also need to import the DC motor code from the library
import motor

And, then initialize the DC motor control object
i2c must already be set up as before
motors = motor.DCMotors(i2c)

DC1 on the board is motor 1, DC2 is motor 2
MOTOR_NUMBER = 1 # DC1

To control the motor, give it a speed between -100 and 100
motors.set_speed(MOTOR_NUMBER, 50) # Go ~1/2 speed forward

To stop, issue a speed of 0
NOTE: ALWAYS STOP BEFORE SWITCH DIRECTIONS!!!
sleep() FOR A SHORT TIME TO LET THE MOTOR ACTUALLY STOP!!!
motors.set_speed(MOTOR_NUMBER, 0)

There is also a brake() command
motors.brake(MOTOR_NUMBER)

!39

Stepper Motors

• NEMA-17

• 200 steps/rev

• 12V 350mA

!40

Image via https://www.adafruit.com/products/324

Stepper Motors

!41

Stepper Motors

!42Adapted from "StepperMotor" by Wapcaplet; Teravolt.

Stepper Motors

!42Adapted from "StepperMotor" by Wapcaplet; Teravolt.

Stepper Motors

!42Adapted from "StepperMotor" by Wapcaplet; Teravolt.

Stepper Motors

!42Adapted from "StepperMotor" by Wapcaplet; Teravolt.

Stepper Motor – Pros/Cons
• Pros

- Precise
- Quiet
- Low Electromagnetic Interference (EMI)
- Can be fully enclosed
- Great for positioning tasks (can sometimes avoid

sensors)

• Cons
- Needs controller
- Higher Initial Cost
- Low torque

!43

Stepper Motor Hardware Setup

!44

12VDC Input

Stepper Motor Initialization
i2c must be defined as before.

We need to import the stepper motor code from the library
import stepper

Now, we can initialize the stepper motor object
stepper_motor = stepper.StepperMotor(i2c)

!45

Stepper Motor Core Functions
Now, we can control the motor. To make it move one step in
SINGLE step mode. Note that the onestep() function is blocking.
Nothing else will run while the step is being performed
stepper_motor.onestep(stepper.FORWARD, stepper.SINGLE)

We can also move in DOUBLE step mode. This time in reverse
stepper_motor.onestep(stepper.BACKWARD, stepper.DOUBLE)

We can also move in MICROSTEP step mode.
It will move 1/16 of a step each time.
stepper_motor.onestep(stepper.FORWARD, stepper.MICROSTEP)

To make the motor move more than one step, we need to
repeatedly call the one-step function. The motors in the
MCHE201 kit have 200 step/rev so the for loop below should
cause the motor to turn one full revolution
for index in range(200):
 stepper_motor.onestep(stepper.FORWARD, stepper.SINGLE)

!46

Linear Actuator Hardware Setup

!47

Connected to
Linear Actuator

Motor

Connected to Linear
Actuator Potentiometer

12VDC Input

Linear Actuator Coding
• It is a DC motor. At the low-level, it's controlled like

one

• The feedback is just a potentiometer whose value is
proportional to length of actuator.

!48

Linear Actuator Initialization
i2c must be defined as before.

We need to import the stepper motor code from the library
import actuator

Now, we can initialize the stepper motor object
linear_actuator = actuator.LinearActuator(i2c)

Optional: Set up the analog-to-digital converter to read
the linear actuator potentiometer that gives us
information on its current length
linear_adc = pyb.ADC(pyb.Pin("X21"))

!49

Linear Actuator Basic Control
To control the actuator, give it a speed between -100 and 100
print("Moving at 1/2 speed in one direction")
linear_actuator.set_speed(50) # Go 1/2 speed in one direction
time.sleep(0.5) # Continue at this speed for 0.5s

ALWAYS STOP THE actuator BEFORE SWITCHING DIRECTIONS!!!!
To stop, issue a speed of 0
print("Stopping.")
linear_actuator.set_speed(0)
time.sleep(1) # pause briefly to let the motor stop - 1s here

To move in the opposite direction, give a negative speed
print("Moving at 1/2 speed in the other direction")
linear_actuator.set_speed(-50) # Go 1/2 speed the other way
time.sleep(0.5) # Continue at this speed for 0.5s

To stop, issue a speed of 0
print("Stopping.")
linear_actuator.set_speed(0)

!50

GitHub
All of the code contained in this lecture is available at
the MCHE201 Class Repository on GitHub:

https://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design

!51

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

