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In-class Exercise 7

e Attach a potentiometer

e Have the servo angle track the angle of the
potentiometer
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In-class Exercise 7 Hardware %
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In-class Exercise 7 Setup

import pyb # 1import the pyboard module
import time # import the time module

.

# Here, we will use the X1 position on the pyboard
servol = pyb.Servo(1)

# Define constants for the min and max servo angles
MAX_SERVO_ANGLE = 45
MIN_SERVO_ANGLE = -45

# Set up the ADC for the potentiometer
pot_adc = pyb.ADC(pyb.Pin("Y11"))



In-class Exercise 7 Angle Conversion

def potADCtoServoAngle(ADC_value):
""" This function converts a potentiometer reading of 0-4095 to an angle
between MIN_SERVO_ANGLE and MAX_SERVO_ANGLE, using the global
representation for those angle extremes

The middle of the potentiometer range, 2048, should map to 0Odeg
The max. of the range, 4095, should map to MAX_SERVO_ANGLE
The min. of the range, 0, should map to MIN_SERVO_ANGLE

Inputs:
ADC_value : a number between 0 and 4095 representing a reading
from the potentiometer

Returns:
angle : The angle to move the servo to to match the potentiometer angle

# define the slope and 1intercept for the line mapping ADC_value to angle
slope = (MAX_SERVO_ANGLE - MIN_SERVO_ANGLE) / 4095
intercept = -slope * 2048

# Now, calculate the angle output based on that linear function
angle = slope * ADC_value + 1intercept

return angle



In-class Exercise 7 Main Loop %

# Now read the pot and move the servo every 10ms, forever
while (True):

# Read the value of the potentiometer.

# It should be in the range 0-4095

pot_value = pot_adc.read()

desired_angle = potADCtoServoAngle(pot_value)

# print out the values, nicely formatted

print("The ADC value 1is {:d}.".format(pot_value))
print("Moving to {:.2f} deg".format(desired_angle))

servol.angle(desired_angle)

# Wait 10ms before looping again
time.sleep_ms(10)



The MCHE201 Board
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MCHE201 Board Analog Inputs &%

e Pin assignments match code you've learned already

e All resistors are included on-board... Just connect
the sensor itself

e Wiring diagrams are included in GitHub repository for
each sensor



MCHE201 Board — Potentiometer
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MCHE201 Board - Soft Pot.
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MCHE201 Board — Flex Sensor %
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MCHE201 Board — FSR

ette
rant

[f

SOSOSO

MCHE 201: Intro.
to Engineering Design
Supported by a
UL Laf
STEP
L) X6 3v3 x7

=
“
-
-
=
"
<
o
-
I
-
-
-
-

* mi

o
S
<
S
<
S
<
S
<
S
<
S
<
S
<
S

AJVI Tosch AUNDIAIVY IR  AGNORAIVYE Lisear AUNDIAIVE 7ot. AOND

LUL LULLLLL

’ ¢:“¢::‘;;:“ c:‘;‘ c:‘ '

12



MCHE201 Board — Servomotors
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MCHE201 Board — Servomotors #
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Controlling Timing

# Import time module
import time

# sleep for 1 second
time.sleep (1)

# sleep for 500 milliseconds
time.sleep_ms(500)

# sleep for 10 microseconds
time.sleep_us(10)

L
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Controlling Timing

# Import time module
import time

&

The time.sleep
family of functions

# sleep for 1 second
sleep the processor.

time.sleep (1)

# sleep for 500 milliseconds
time.sleep_ms(500)

# sleep for 10 microseconds
time.sleep_us(10)
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Time Comparison

e Get the current time (to the ms or us) using
time.ticks_ms() Oor time.ticks_us()

o

e Do time math using time.ticks_add() and
time.ticks_diff()

-time.ticks_add(ticks, delta) calculates
ticks + delta # Units must match

-time.ticks_diff(ticksl, ticks2) calculates
ticksl - ticks2

e More info at: http://docs.micropython.org/en/
latest/pyboard/library/utime.html

15
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In-class Exercise 8

e Connect a pushbutton
e Turn on the green LED

e \When the pushbutton is pressed
- Turn on the red LED
- Turn off the green LED

e \When the button is pressed again
- Turn off the red LED
- Turn on the green LED

- Print the time elapsed between button presses to the
REPL

16



In-class Exercise 9

e Connect a pushbutton

o

e Once the button is pressed the first time, turn off all
LEDs.

e Then, turn on 1 LED every 1s until the button is
pressed again

e Turn on the green LED

e \When the button is pressed again, print the time
elapsed between button presses to the REPL

 [f more than 5s elapses:
- Print "You took too long!!!" to the REPL
- Turn on only the green LED again

17



MCHE201 Track Connections %

18



MCHE201 Track Start Signal %

e Will be closed for the 30-second trial time, open
otherwise

e \Works just like holding down a pushbutton for 30
seconds.

e The 120VAC outlet is always on

19



Reading the MCHE201 Start Signal *
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Reading the MCHE201 Start Signal #

Connected to the Banana
Plugs on the Track

-
-

R9 RA10 1%
x | | ]
.
(O
e Ol syl el el
// § vy Y (4214 ] v ¥

The track start signal behaves
just like a pushbutton being
held down for 30 seconds.

N
&
o
S L
o
S
<

<
LL Ls LULoitL

f‘c:cc:cc: “¢:G¢:‘ ‘

21



One way to Sense Start

# Assign the input pin to variable input_pin
# We set 1t up as an input with a pulldown resistor
input_pin = pyb.Pin("X6", pyb.Pin.IN, pull=pyb.Pin.PULL_DOWN)

# This will loop forever, checking the button every 10ms
while (True):
input_state = input_pin.value() # read the state of the input

if (input_state):
print("The start button is pressed.)
# Main code could be here

# If what runs here is less than 30 sec. long, you'll need to

# account for that condition. If not, then the start signal

# will still be on when this part of your code finishes. So, 1t
# will still be True and therefore start running again.

else:
print("The start button is not pressed.")

time.sleep_ms(10) # Sleep 10 milliseconds (0.01s)

22



A More "Professional™ Way %

e Use Interrupts:
- "Run this function

iImmediately when X happens”

- Functions need to:

+be short/fast, and

+ create no new objects

ehttps://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design/tree/Spring-2019/MicroPython/
pyboard%20start%20button%20interrupt

 More info:

- https://micropyt
library/machine.

- https://micropyt

non.org/resources/docs/en/latest/
Pin.html#machine.Pin.rg

non.org/resources/docs/en/latest/

reference/isr_rules.html

23
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In-class Exercise 10

e Connect
- a pushbutton
- the servomotor

e Start the servo at 0 degrees

e \When the pushbutton is pressed:
- move the servo to 30 degrees
- pause 1 second
- move the servo back to 0 degrees

e Only allow this to happen once per 30 seconds

24
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IR Sensor Code

e |t's just an analog sensor

o

e Distance varies between Outside of this range,
- 3.1V at 4cm, and you can’t trust the
- 0.3V at 30cm values

-

e There is a nonlinear relationship between these
values

27



What will happen?

import pyb # 1import the pyboard module
import time # import the time module

counter = 0 # Set the initial value of the counter

while (True):
value = 1 / (10 - counter)

print("Value = {:.4f}".format(value))

# Sleep 1s
time.sleep(1)

# i1ncrement the counter by 1
counter = counter + 1

.

28



Try... Except

counter = 0 # Set the initial value of the counter

try:

while (True):
value = 1 / (10 - counter)

print("Things are running smoothly...")
print("Value = {:.4f}".format(value))

# Sleep 1s
time.sleep(1)

# i1ncrement the counter by 1
counter = counter + 1

If there is an
exception
(error) here,
then...

except: # This with catch the exception
print("Things are not so smooth anymore.'")

29



Try... Except

counter = 0 # Set the initial value of the counter

try:

L

while (True):
value = 1 / (10 - counter)

print("Things are running smoothly...")
print("Value = {:.4f}".format(value))

# Sleep 1s
time.sleep(1)

# i1ncrement the counter by 1
counter = counter + 1

If there is an
exception
(error) here,
then...

except: # This with catch the exception
|ﬁrint("Things are not so smooth anymore.")

This will run.

29



Try... Except... Finally

try:
# Stuff to

except: # This
# Stuff to

finally:
# Stuff to
# or there

do if all is well

with catch the exception
do 1f there i1s an exception

do when try finishes
1S an exception

30



KEY POINT!!!

e [f you are controlling hardware, it is your
responsibility to ensure it stops safely if errors occur

e For example:

- Wrap motor control code in try... except... that would
stop the motor if any syntax errors occur

- Wrap linear actuator code similarly

- Have a master "finally" that turns off all actuators if
exceptions occur

31



e Separate microcontroller handles low-level motor
control

* pyboard and it communicate over i°c
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Installation of MCHE201 Libraries %

e Goto: https://github.com/DocVaughan/
MCHE201 Controller

e Download all the . py files from there

e Copy them to the pyboard PYBFLASH (or micro-SD
card if you are running your code from there)

33
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PYBLASH after install

| NON | . PYBFLASH
< ) = [nlf=1E=N & Q
Favorites Name ~  Date Modified
£\ Recents W actuator.py Feb 25, 2019 at 6:28 PM
. & boot. Dec 31, 2014 at 10:00 PN
@ AirDrop , by
¥ main.py Mar 8, 2019 at 10:15 AM
{z} josh % motor.py Feb 25, 2019 at 6:28 PM
’ L}
B pybcdc.inf Dec 31, 2014 at 11:00 PM
© Downloads @ README.txt Dec 31, 2014 at 11:00 PN

) Desktop B stepper.py Feb 25, 2019 at 6:28 PM

@ Documents
] Research

[©y] Pictures

E:E Movies -4 PYBFLASH > « stepper.py

1 of 8 selected, 35 KB available

34



Initialization in MicroPython

import machine

12cC machine.I2C(scl=machine.Pin("X9"),
sda=machine.Pin("X10"))

This is needed for all
MCHE201 controller board
scripts and should never

need to be changed.

L —
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DC Motor Hardware Setup

e Motor can be plugged into DC1 or DC2
e Do NOT let conductors on the leads touch

12VDC Input

DC Motor 1

MCHE 201: Intro.
to Engineering Design
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STEP Grant

ST

DC Motor 2
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AVOID!!! - You will break the board. @&

e Stripping too much wire from the motor connections
e Keeping stalled motors powered

e Reversing a motor without stopping it first

37



Entirely-avoidable Carnage @,&




Entirely-avoidable Carna
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Entirely-avoidable Carnage
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DC Motor Setup and Core Functions

# We also need to import the DC motor code from the library
import motor

# And, then initialize the DC motor control object
# 12c must already be set up as before
motors = motor.DCMotors(i2c)

# DC1l on the board is motor 1, DC2 1i1s motor 2
MOTOR_NUMBER = 1 # DC1

# To control the motor, give 1t a speed between -100 and 100
motors.set_speed(MOTOR_NUMBER, 50) # Go ~1/2 speed forward

# To stop, 1ssue a speed of 0

# NOTE: ALWAYS STOP BEFORE SWITCH DIRECTIONS!!!

T sleep() FOR A SHORT TIME TO LET THE MOTOR ACTUALLY STOP!!!
motors.set_speed (MOTOR_NUMBER, 0)

# There is also a brake() command
motors.brake (MOTOR_NUMBER)

39



Stepper Motors

* NEMA-17

e 200 steps/rev

e 12V 350mA

Image via https://www.adafruit.com/products/324

40



Stepper Motors




Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42



Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42



Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42



Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42



Stepper Motor — Pros/Cons %

* Pros
- Precise
- Quiet
- Low Electromagnetic Interference (EMI)
- Can be fully enclosed

- Great for positioning tasks (can sometimes avoid
Sensors)

e Cons
- Needs controller
- Higher Initial Cost
- Low torque

43



Stepper Motor Hardware Setup #

12VDC Input
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Stepper Motor Initialization

# 12c must be defined as before.

# We need to import the stepper motor code from the library
import stepper

# Now, we can initialize the stepper motor object
stepper_motor = stepper.StepperMotor(i2c)

45



Stepper Motor Core Functions #

# Now, we can control the motor. To make 1t move one step 1n

# SINGLE step mode. Note that the onestep() function is blocking.
# Nothing else will run while the step is being performed
stepper_motor.onestep(stepper.FORWARD, stepper.SINGLE)

# We can also move in DOUBLE step mode. This time 1in reverse
stepper_motor.onestep(stepper.BACKWARD, stepper.DOUBLE)

# We can also move in MICROSTEP step mode.
# It will move 1/16 of a step each time.
stepper_motor.onestep(stepper.FORWARD, stepper.MICROSTEP)

# To make the motor move more than one step, we need to

# repeatedly call the one-step function. The motors 1in the

# MCHE201 kit have 200 step/rev so the for loop below should

# cause the motor to turn one full revolution

for index in range(200):
stepper_motor.onestep(stepper.FORWARD, stepper.SINGLE)

46



Linear Actuator Hardware Setup
12VDC Input
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o

Linear Actuator Coding

e [t iIs a DC motor. At the low-level, it's controlled like
one

e The feedback is just a potentiometer whose value is
proportional to length of actuator.
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Linear Actuator Initialization

# 12c must be defined as before.

# We need to import the stepper motor code from the library
import actuator

# Now, we can 1nitialize the stepper motor object
linear_actuator = actuator.LinearActuator(i2c)

# Optional: Set up the analog-to-digital converter to read
# the linear actuator potentiometer that gives us

# information on its current length

linear_adc = pyb.ADC(pyb.Pin("X21"))

49



Linear Actuator Basic Control

# To control the actuator, give it a speed between -100 and 100
print("Moving at 1/2 speed in one direction")

linear actuator.set speed(50) # Go 1/2 speed in one direction
time.sleep(0.5) # Continue at this speed for 0.5s

# ALWAYS STOP THE actuator BEFORE SWITCHING DIRECTIONS!!!!

# To stop, issue a speed of 0

print("Stopping.")

linear actuator.set speed(0)

time.sleep(l) # pause briefly to let the motor stop - 1s here

# To move 1in the opposite direction, give a negative speed
print("Moving at 1/2 speed in the other direction")

linear actuator.set speed(-50) # Go 1/2 speed the other way
time.sleep(0.5) # Continue at this speed for 0.5s

# To stop, issue a speed of 0

print ("'Stopping.")
linear actuator.set speed(0)
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GitHub o

All of the code contained in this lecture is available at
the MCHE201 Class Repository on GitHub:

https://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design
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