o

MicroPython

Introduction (cont.)
MCHE 201 - Spring 2019

Dr. Joshua Vaughan
Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

mailto:joshua.vaughan@lousiana.edu?subject=
http://twitter.com/doc_vaughan

In-class Exercise 7

e Attach a potentiometer

e Have the servo angle track the angle of the
potentiometer

o

In-class Exercise 7 Hardware %

o o
g® - LIRE o: . .
& S == | (o O O U © 0600606060 0 0 0 0 0
- Ilgf = e
= |:'|II e (o) © © 0606060606 0600 0 0 0 0
& 3 n n O: © © 00 00000 0 0 0
& n>n ~ - ® © 6 06 06 06 06 0 0 0 0 o
3 & E:OE °o o © 0o 06060060 00 0 0 0
=0 _ = 1108
T I = O=
= = (0] © o060 00 0 0 0 0
& - (o F © e 0060 0 0 0 00
n.—-o-l I (o B! ®© o 000 0 0 0 0 0
"’O::ID (o ¥ © o600 0600 0 0 0
20 "-—I (@ Ju © 060606 00 000 0 0 0 000
<oooooooooooo§

N

In-class Exercise 7 Setup

import pyb # 1import the pyboard module
import time # import the time module

.

Here, we will use the X1 position on the pyboard
servol = pyb.Servo(1)

Define constants for the min and max servo angles
MAX_SERVO_ANGLE = 45
MIN_SERVO_ANGLE = -45

Set up the ADC for the potentiometer
pot_adc = pyb.ADC(pyb.Pin("Y11"))

In-class Exercise 7 Angle Conversion

def potADCtoServoAngle(ADC_value):
""" This function converts a potentiometer reading of 0-4095 to an angle
between MIN_SERVO_ANGLE and MAX_SERVO_ANGLE, using the global
representation for those angle extremes

The middle of the potentiometer range, 2048, should map to 0Odeg
The max. of the range, 4095, should map to MAX_SERVO_ANGLE
The min. of the range, 0, should map to MIN_SERVO_ANGLE

Inputs:
ADC_value : a number between 0 and 4095 representing a reading
from the potentiometer

Returns:
angle : The angle to move the servo to to match the potentiometer angle

define the slope and 1intercept for the line mapping ADC_value to angle
slope = (MAX_SERVO_ANGLE - MIN_SERVO_ANGLE) / 4095
intercept = -slope * 2048

Now, calculate the angle output based on that linear function
angle = slope * ADC_value + 1intercept

return angle

In-class Exercise 7 Main Loop %

Now read the pot and move the servo every 10ms, forever
while (True):

Read the value of the potentiometer.

It should be in the range 0-4095

pot_value = pot_adc.read()

desired_angle = potADCtoServoAngle(pot_value)

print out the values, nicely formatted

print("The ADC value 1is {:d}.".format(pot_value))
print("Moving to {:.2f} deg".format(desired_angle))

servol.angle(desired_angle)

Wait 10ms before looping again
time.sleep_ms(10)

The MCHE201 Board

Solenoid Outputs

12VDC Input\ , Buzzer
@ MM ‘ L Ji” i HH@*

ﬁHHHH[][] (- - cog‘ 0000000
1.0 .8

SOGIOEGE
“ MMI‘I’ :1::. "li') wewu
S N 7
ntro. L mma
lMM] ‘ 3! 3! oto’éﬁﬂ.ife@inglées.gn

% R12 R11 U1 Supported by a z,

WW E E E EE § UL Lafayette
[] €11 = = = w D 8888 STEP Grant

W

O=\0=C00000

000000

00

Motor Outputs

EROEREEANNNN

— — — —
il _ I I'

lllll 3V3 X6 I3V3 X7 | 3V3 X8

000000 (@
W_JW

Analog Inputs Digital 1/O

Servo
Outputs

MCHE201 Board Analog Inputs &%

e Pin assignments match code you've learned already

e All resistors are included on-board... Just connect
the sensor itself

e Wiring diagrams are included in GitHub repository for
each sensor

MCHE201 Board — Potentiometer

ette
2-111

¢

Supported by a
UL Laf
STEP

L) X6 J3v3 x7

c
Ay
onN
- o
-

CQ
- on
-
® g
~N o
w €
x o
W C
5 W
o
-

| I (2l
3 Bl Eos
[]U."

mnnmm

I IHIHIHIHII

Ia““

MCHE201 Board - Soft Pot.

ette
rant

[f

Supported by a
STEP

UL Laf
53 X6 [3v3 %7

o

-
-

c
=
<
o~
w
b
w
x

to Engineering Design

Flax AGACHASYS PSR

Pot. AOND

1 nnnnm
‘ l-
=2

T

AV Tosch ALNDIAIVY IR AGNORAIVY Lisear AUNDIATIYY

V"1

. ﬂ‘l‘:ﬂ‘.":ﬁ

10

MCHE201 Board — Flex Sensor %

ette
rant

d

UL Lafa
STEP

Supported by a
LB) X6 13v3 x7

MCHE 201: Intro,
to Engineering Design

NCIASYS PSR

Flex AL

g

[](). 2
rnmn

11

MCHE201 Board — FSR

ette
rant

[f

SOSOSO

MCHE 201: Intro.
to Engineering Design
Supported by a
UL Laf
STEP
L) X6 3v3 x7

=
“
-
-
=
"
<
o
-
I
-
-
-
-

* mi

o
S
<
S
<
S
<
S
<
S
<
S
<
S
<
S

AJVI Tosch AUNDIAIVY IR AGNORAIVYE Lisear AUNDIAIVE 7ot. AOND

LUL LULLLLL

’ ¢:“¢::‘;;:“ c:‘;‘ c:‘ '

12

MCHE201 Board — Servomotors

‘:c: SOSH S
“v ;ooooooooooooooo
O

O MCHE 201: Intro.
Q to Engineering Design

Supported by a

UL Lafayette
8888 STEP Grant

-
—_—
[
S
S
=
4—
e
[
-
—
=

Wived 2s Sevve)

13

MCHE201 Board — Servomotors #

—

R9 R10

- = 00000

XI2XI1 X5 Y8 Y7

3V3 Y9 YIOGNDGND Y2 Y1 5V

® m

MCHE 201: Intro.
to Engineering Design

Supported by a
UL Lafayette
STEP Grant

R7

JA3V3 Touch AGNDJA3V3 IR AGNDJA3V3 Linear AGNDJA3V3 Pot. AGND| Flex AGNDJA3V3 FSR

@ SOSOSHSRSOSVSHSO)
| o e e s e s e e e —— — — — — —

foaetonoton

R9 R10

"
H

XI2 XI1 X5 Y8

3V3 Y9 YI0GNDGND Y2 Y1 5V

° :2 Bv-l-U I

MCHE 201: Intro.
to Engineering Design
Supported by a

UL Lafayette

STEP Grant

T |
ol 1

ﬁ
=

wmj ¥
LED2 RI.

[A3V3 Touch AGNDJA3V3 IR AGNDJA3V3 Linear AGND[A3V3 Pot. AGND[Flex AGND[A3V3 FSR

@ 3::3::3::3::3::9::9::3&‘
| e e —— — — ———— —— —— —— —— —— ———

Vired as Servo 3

L‘.LLLU.‘UULLU

12vDC
Input

rﬂ

(

H

RS R6

LELN

q R9R10
jooeoe9) - = 00999

a
= 12V

EVERT]

MCHE 201: Intro.
to Engineering Design

Supported by a
UL Lafayette
STEP Grant

LU

ABVS Touch AGNDIA3V3 IR AGNDJ|A3V3 Linear AGNDJA3V3 Pot. AGND] Flex AGND|A3V3 FSR

@ qu".}ﬂ CDGC:GC:GC:’JQGC:

LLLULU;JULUU

R

- 00000

XI1 X5 Y8 Y7

asas GE

YI0GNDGND Y2 Y1 5V

Bvl.O I

shd -
el T i

2 --saOm

0060

3V3 Y9 Y10 GNDGND Y2 Y1 5V

i
[J -

MCHE 201: Intro.
to Engineering Design
Supported by a

UL Lafayette

STEP Grant

-
-

[A3V3 Touch AGND[A3V3 IR _AGNDJA3V3 Linear AGND[A3V3 Pot. AGND[Flex AGND[A3V3 FSR! 3V3_ X6 [3V3 X7

@ "‘C: ¢ﬁ‘.}¢b‘.}¢:9¢:u¢:u¢ﬁ‘.}¢b‘

Vired as Servo 4

BVID I

3V3 X8

SOSOSC Q

13

Controlling Timing

Import time module
import time

sleep for 1 second
time.sleep (1)

sleep for 500 milliseconds
time.sleep_ms(500)

sleep for 10 microseconds
time.sleep_us(10)

L

14

Controlling Timing

Import time module
import time

&

The time.sleep
family of functions

sleep for 1 second
sleep the processor.

time.sleep (1)

sleep for 500 milliseconds
time.sleep_ms(500)

sleep for 10 microseconds
time.sleep_us(10)

14

Time Comparison

e Get the current time (to the ms or us) using
time.ticks_ms() Oor time.ticks_us()

o

e Do time math using time.ticks_add() and
time.ticks_diff()

-time.ticks_add(ticks, delta) calculates
ticks + delta # Units must match

-time.ticks_diff(ticksl, ticks2) calculates
ticksl - ticks2

e More info at: http://docs.micropython.org/en/
latest/pyboard/library/utime.html

15

http://docs.micropython.org/en/latest/pyboard/library/utime.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html

In-class Exercise 8

e Connect a pushbutton
e Turn on the green LED

e \When the pushbutton is pressed
- Turn on the red LED
- Turn off the green LED

e \When the button is pressed again
- Turn off the red LED
- Turn on the green LED

- Print the time elapsed between button presses to the
REPL

16

In-class Exercise 9

e Connect a pushbutton

o

e Once the button is pressed the first time, turn off all
LEDs.

e Then, turn on 1 LED every 1s until the button is
pressed again

e Turn on the green LED

e \When the button is pressed again, print the time
elapsed between button presses to the REPL

 [f more than 5s elapses:
- Print "You took too long!!!" to the REPL
- Turn on only the green LED again

17

MCHE201 Track Connections %

18

MCHE201 Track Start Signal %

e Will be closed for the 30-second trial time, open
otherwise

e \Works just like holding down a pushbutton for 30
seconds.

e The 120VAC outlet is always on

19

Reading the MCHE201 Start Signal *

l;i. m — l‘l e

njgllllllllllllll

Connected to the Banana
Plugs on the Track

=" o |3

‘Bl &Y The track start signal behaves
EPEr]e) just like a pushbutton being
held down for 30 seconds.

120 ‘—‘# ‘3 u‘n—'m’_-
SOSOS c:‘

.
-

20

Reading the MCHE201 Start Signal #

Connected to the Banana
Plugs on the Track

-
-

R9 RA10 1%
x | |]
.
(O
e Ol syl el el
// § vy Y (4214] v ¥

The track start signal behaves
just like a pushbutton being
held down for 30 seconds.

N
&
o
S L
o
S
<

<
LL Ls LULoitL

f‘c:cc:cc: “¢:G¢:‘ ‘

21

One way to Sense Start

Assign the input pin to variable input_pin
We set 1t up as an input with a pulldown resistor
input_pin = pyb.Pin("X6", pyb.Pin.IN, pull=pyb.Pin.PULL_DOWN)

This will loop forever, checking the button every 10ms
while (True):
input_state = input_pin.value() # read the state of the input

if (input_state):
print("The start button is pressed.)
Main code could be here

If what runs here is less than 30 sec. long, you'll need to

account for that condition. If not, then the start signal

will still be on when this part of your code finishes. So, 1t
will still be True and therefore start running again.

else:
print("The start button is not pressed.")

time.sleep_ms(10) # Sleep 10 milliseconds (0.01s)

22

A More "Professional™ Way %

e Use Interrupts:
- "Run this function

iImmediately when X happens”

- Functions need to:

+be short/fast, and

+ create no new objects

ehttps://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design/tree/Spring-2019/MicroPython/
pyboard%20start%20button%20interrupt

 More info:

- https://micropyt
library/machine.

- https://micropyt

non.org/resources/docs/en/latest/
Pin.html#machine.Pin.rg

non.org/resources/docs/en/latest/

reference/isr_rules.html

23

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/pyboard%20start%20button%20interrupt
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/pyboard%20start%20button%20interrupt
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/pyboard%20start%20button%20interrupt
https://micropython.org/resources/docs/en/latest/library/machine.Pin.html#machine.Pin.irq
https://micropython.org/resources/docs/en/latest/library/machine.Pin.html#machine.Pin.irq
https://micropython.org/resources/docs/en/latest/reference/isr_rules.html
https://micropython.org/resources/docs/en/latest/reference/isr_rules.html

In-class Exercise 10

e Connect
- a pushbutton
- the servomotor

e Start the servo at 0 degrees

e \When the pushbutton is pressed:
- move the servo to 30 degrees
- pause 1 second
- move the servo back to 0 degrees

e Only allow this to happen once per 30 seconds

24

o
&
D
7))
)
b
3
d
b
©
-
-
o
N
C
D
7))
o

NIA EAE IN9 LS¥ 2TA TTA OTA BA | @X £4X 9X 5SX hX

m
>
n
<
—
>
1 X21 X22 X 3 % 4 GND vmg

0-TAGAd
| |

X1k XL7 X18 X19 X

YL Y2 Y3 Y4 Y5 YB Y? Y8 |X9 XLO X1l X2 RST GND 3V3 VIN

25

y, v v v v v PP VY

- IR Sensor %

—]
-
-
—
—
=)
-
=T
—e
-
—
—

WO IS Ilalalall T 12 ==2esas
apjadejen n
e Aq pajoddng

MCHE201 Board

26

IR Sensor Code

e |t's just an analog sensor

o

e Distance varies between Outside of this range,
- 3.1V at 4cm, and you can’t trust the
- 0.3V at 30cm values

-

e There is a nonlinear relationship between these
values

27

What will happen?

import pyb # 1import the pyboard module
import time # import the time module

counter = 0 # Set the initial value of the counter

while (True):
value = 1 / (10 - counter)

print("Value = {:.4f}".format(value))

Sleep 1s
time.sleep(1)

i1ncrement the counter by 1
counter = counter + 1

.

28

Try... Except

counter = 0 # Set the initial value of the counter

try:

while (True):
value = 1 / (10 - counter)

print("Things are running smoothly...")
print("Value = {:.4f}".format(value))

Sleep 1s
time.sleep(1)

i1ncrement the counter by 1
counter = counter + 1

If there is an
exception
(error) here,
then...

except: # This with catch the exception
print("Things are not so smooth anymore.'")

29

Try... Except

counter = 0 # Set the initial value of the counter

try:

L

while (True):
value = 1 / (10 - counter)

print("Things are running smoothly...")
print("Value = {:.4f}".format(value))

Sleep 1s
time.sleep(1)

i1ncrement the counter by 1
counter = counter + 1

If there is an
exception
(error) here,
then...

except: # This with catch the exception
|ﬁrint("Things are not so smooth anymore.")

This will run.

29

Try... Except... Finally

try:
Stuff to

except: # This
Stuff to

finally:
Stuff to
or there

do if all is well

with catch the exception
do 1f there i1s an exception

do when try finishes
1S an exception

30

KEY POINT!!!

e [f you are controlling hardware, it is your
responsibility to ensure it stops safely if errors occur

e For example:

- Wrap motor control code in try... except... that would
stop the motor if any syntax errors occur

- Wrap linear actuator code similarly

- Have a master "finally" that turns off all actuators if
exceptions occur

31

e Separate microcontroller handles low-level motor
control

* pyboard and it communicate over i°c

ﬂkﬁucﬁﬁv

“ 2V

MCHE 20@1: Intro.
to Engineering Design

®
(©
(©
10
1(*JO
(©
10
o

Supported by a
UL Lafayette
STEP Grant

3V3 X6 3V3 X7 3\/3 X8 I

Gﬂﬁﬁﬁﬂ(i)

MCHE201 Board — Motor Control %

32

Installation of MCHE201 Libraries %

e Goto: https://github.com/DocVaughan/
MCHE201 Controller

e Download all the . py files from there

e Copy them to the pyboard PYBFLASH (or micro-SD
card if you are running your code from there)

33

https://github.com/DocVaughan/MCHE201_Controller
https://github.com/DocVaughan/MCHE201_Controller
https://github.com/DocVaughan/MCHE201_Controller

PYBLASH after install

| NON | . PYBFLASH
<) = [nlf=1E=N & Q
Favorites Name ~ Date Modified
£\ Recents W actuator.py Feb 25, 2019 at 6:28 PM
. & boot. Dec 31, 2014 at 10:00 PN
@ AirDrop , by
¥ main.py Mar 8, 2019 at 10:15 AM
{z} josh % motor.py Feb 25, 2019 at 6:28 PM
’ L}
B pybcdc.inf Dec 31, 2014 at 11:00 PM
© Downloads @ README.txt Dec 31, 2014 at 11:00 PN

) Desktop B stepper.py Feb 25, 2019 at 6:28 PM

@ Documents
] Research

[©y] Pictures

E:E Movies -4 PYBFLASH > « stepper.py

1 of 8 selected, 35 KB available

34

Initialization in MicroPython

import machine

12cC machine.I2C(scl=machine.Pin("X9"),
sda=machine.Pin("X10"))

This is needed for all
MCHE201 controller board
scripts and should never

need to be changed.

L —

35

DC Motor Hardware Setup

e Motor can be plugged into DC1 or DC2
e Do NOT let conductors on the leads touch

12VDC Input

DC Motor 1

MCHE 201: Intro.
to Engineering Design

Supported by a -
UL Lafagette
STEP Grant

ST

DC Motor 2

36

AVOID!!! - You will break the board. @&

e Stripping too much wire from the motor connections
e Keeping stalled motors powered

e Reversing a motor without stopping it first

37

Entirely-avoidable Carnage @,&

Entirely-avoidable Carna

38

Entirely-avoidable Carnage

.'“'ﬁ’-m?-‘:?"\‘557'fr" n—

38

DC Motor Setup and Core Functions

We also need to import the DC motor code from the library
import motor

And, then initialize the DC motor control object
12c must already be set up as before
motors = motor.DCMotors(i2c)

DC1l on the board is motor 1, DC2 1i1s motor 2
MOTOR_NUMBER = 1 # DC1

To control the motor, give 1t a speed between -100 and 100
motors.set_speed(MOTOR_NUMBER, 50) # Go ~1/2 speed forward

To stop, 1ssue a speed of 0

NOTE: ALWAYS STOP BEFORE SWITCH DIRECTIONS!!!

T sleep() FOR A SHORT TIME TO LET THE MOTOR ACTUALLY STOP!!!
motors.set_speed (MOTOR_NUMBER, 0)

There is also a brake() command
motors.brake (MOTOR_NUMBER)

39

Stepper Motors

* NEMA-17

e 200 steps/rev

e 12V 350mA

Image via https://www.adafruit.com/products/324

40

Stepper Motors

Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42

Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42

Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42

Adapted from "StepperMotor" by Wapcaplet; Teravolt. 42

Stepper Motor — Pros/Cons %

* Pros
- Precise
- Quiet
- Low Electromagnetic Interference (EMI)
- Can be fully enclosed

- Great for positioning tasks (can sometimes avoid
Sensors)

e Cons
- Needs controller
- Higher Initial Cost
- Low torque

43

Stepper Motor Hardware Setup #

12VDC Input

080060 -=ee30 @M

MCHE 221: Intro.
to Engineering Design
Supported by a

UL Lafayette
STEP Grant

44

Stepper Motor Initialization

12c must be defined as before.

We need to import the stepper motor code from the library
import stepper

Now, we can initialize the stepper motor object
stepper_motor = stepper.StepperMotor(i2c)

45

Stepper Motor Core Functions #

Now, we can control the motor. To make 1t move one step 1n

SINGLE step mode. Note that the onestep() function is blocking.
Nothing else will run while the step is being performed
stepper_motor.onestep(stepper.FORWARD, stepper.SINGLE)

We can also move in DOUBLE step mode. This time 1in reverse
stepper_motor.onestep(stepper.BACKWARD, stepper.DOUBLE)

We can also move in MICROSTEP step mode.
It will move 1/16 of a step each time.
stepper_motor.onestep(stepper.FORWARD, stepper.MICROSTEP)

To make the motor move more than one step, we need to

repeatedly call the one-step function. The motors 1in the

MCHE201 kit have 200 step/rev so the for loop below should

cause the motor to turn one full revolution

for index in range(200):
stepper_motor.onestep(stepper.FORWARD, stepper.SINGLE)

46

Linear Actuator Hardware Setup
12VDC Input

RRRRR

0000000

Connected to
Linear Actuator : a
MOtOI' olils = é - :M . Q Sx?f’ii'}?d.ﬁl : a .
= STEP Grant i

LED2

Connected to Linear
Actuator Potentiometer

47

o

Linear Actuator Coding

e [t iIs a DC motor. At the low-level, it's controlled like
one

e The feedback is just a potentiometer whose value is
proportional to length of actuator.

48

Linear Actuator Initialization

12c must be defined as before.

We need to import the stepper motor code from the library
import actuator

Now, we can 1nitialize the stepper motor object
linear_actuator = actuator.LinearActuator(i2c)

Optional: Set up the analog-to-digital converter to read
the linear actuator potentiometer that gives us

information on its current length

linear_adc = pyb.ADC(pyb.Pin("X21"))

49

Linear Actuator Basic Control

To control the actuator, give it a speed between -100 and 100
print("Moving at 1/2 speed in one direction")

linear actuator.set speed(50) # Go 1/2 speed in one direction
time.sleep(0.5) # Continue at this speed for 0.5s

ALWAYS STOP THE actuator BEFORE SWITCHING DIRECTIONS!!!!

To stop, issue a speed of 0

print("Stopping.")

linear actuator.set speed(0)

time.sleep(l) # pause briefly to let the motor stop - 1s here

To move 1in the opposite direction, give a negative speed
print("Moving at 1/2 speed in the other direction")

linear actuator.set speed(-50) # Go 1/2 speed the other way
time.sleep(0.5) # Continue at this speed for 0.5s

To stop, issue a speed of 0

print ("'Stopping.")
linear actuator.set speed(0)

50

GitHub o

All of the code contained in this lecture is available at
the MCHE201 Class Repository on GitHub:

https://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design

51

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

