
MicroPython
Introduction (cont.)

MCHE 201 – Spring 2019

Dr. Joshua Vaughan
Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

mailto:joshua.vaughan@lousiana.edu?subject=
http://twitter.com/doc_vaughan

GitHub
All of the code contained in these lectures is available
at the MCHE201 Class Repository on GitHub:

https://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design

!2

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

Breadboard Setup Review

!3

Re
dB

oa
rd

 a
nd

 b
re

ad
bo

ar
d

im
ag

es
 fr

om
 S

pa
rk

Fu
n

El
ec

tr
on

ics
.

Break in
connection

Internally
connected by rowInternally

connected
by column

In your kit…
• Potentiometer - changes resistance based on

rotation

• Soft Potentiometer - changes resistance based on
where it’s squeezed

• Flex Sensor - changes resistance based on how far
it’s bent

• Force Sensitive Resistor (FSR) - changes
resistance based on how hard it’s squeezed

!4

All of these are analog sensors.

Measuring Changes in Resistance
• Make the component part of a

voltage divider

• Measure voltage change resulting
from resistance change

• To measure an analog signal, we'll
need an Analog-to-Digital
Converter (ADC)

• The pyboard ADCs are 12 bit,
meaning that a value of 4095 for
3.3V and a value of 0 for 0V

!5

+3.3V

Analog Pin

On the pyboard

!6Image via micropython.org

These are the
preferred
analog inputs.

We can use
any ADC pins

http://micropython.org

In-class Exercise 4
• When the external pushbutton is pressed, turn on

one of the onboard LEDs. When it is not pressed, the
LED should be off.

• Hint: The logic will be identical to In-class Exercise 3.
Only the setup and method to read the button need
to change.

!7

In-class Exercise 4 Setup
import pyb # import the pyboard module
import time # import the time module

Assign the 1st LED to variable RED_LED
RED_LED = pyb.LED(1)

Assign the input pin to input_pin
input_pin = pyb.Pin("X6",
 pyb.Pin.IN,
 pull=pyb.Pin.PULL_DOWN)

!8

In-class Exercise 4 Algorithm
Loop forever, checking the button every 100ms
while (True):
 # read the state of the input
 input_state = input_pin.value()

 if (input_state):
 print("The input is high (on).")
 RED_LED.on()

 else:
 print("The input is low (off).")
 RED_LED.off()

 # Sleep 100 milliseconds (0.1s)
 time.sleep_ms(100)

!9

In-Class Exercise 5
• Divide the flex sensor range into four

• Turn on the same number LEDs as the “range
number” of the current state of the flex sensor.

• In other words, when the sensor is not bent, no LEDs
should be on. When it’s bent a little, one LED should
turn on. When it’s bent to its maximum, all 4 LEDs
should be on.

!10

In-class Exercise 5 Setup
import pyb # import the pyboard module
import time # import the time module

Set up the analog-to-digital converter
flex_adc = pyb.ADC(pyb.Pin("X22"))

Assign the names to the onboard LEDs
RED_LED = pyb.LED(1)
GREEN_LED = pyb.LED(2)
YELLOW_LED = pyb.LED(3)
BLUE_LED = pyb.LED(4)

!11

Wait… What's the algorithm?

!12

Setting up the Ranges
These numbers will likely vary for your particular system.
So, they should be determined experimentally.
MIN_ADC = 2875
CENTER = 3275
MAX_ADC = 3850

Using the analysis above, we can define the size of each division
LOW_ADC_DIVIDER = (CENTER - MIN_ADC) / 4.5
HIGH_ADC_DIVIDER = (MAX_ADC - CENTER) / 4.5

We'll create ranges both above and below the center
This will account for the flex sensor being bent in either direction
ONE_ZONE_LOW = CENTER - LOW_ADC_DIVIDER * 0.5
TWO_LED_LOW = CENTER - LOW_ADC_DIVIDER * 1.5
THREE_LED_LOW = CENTER - LOW_ADC_DIVIDER * 2.5
FOUR_LED_LOW = CENTER - LOW_ADC_DIVIDER * 3.5

ONE_ZONE_HIGH = CENTER + HIGH_ADC_DIVIDER * 0.5
TWO_LED_HIGH = CENTER + HIGH_ADC_DIVIDER * 1.5
THREE_LED_HIGH = CENTER + HIGH_ADC_DIVIDER * 2.5
FOUR_LED_HIGH = CENTER + HIGH_ADC_DIVIDER * 3.5

!13

The Reading and Check
Now read the pot every 500ms, forever
while (True):
 # Read the value of the flex sensor. Should be in the range 0-4095
 flex_value = flex_adc.read()

 # print out the values, nicely formatted
 print("\nADC: {:5d}".format(flex_value))

 # Check ADC value to determine to which of the ranges it belongs
 if flex_value < FOUR_LED_LOW or flex_value > FOUR_LED_HIGH:
 print("All LEDs on.")
 RED_LED.on()
 GREEN_LED.on()
 YELLOW_LED.on()
 BLUE_LED.on()
 (several elif statements)
 else:
 print("No LEDs on.")
 RED_LED.off()
 GREEN_LED.off()
 YELLOW_LED.off()
 BLUE_LED.off()

 time.sleep_ms(500)

!14

In-class Exercise 6
• Vary the intensity of the onboard blue LED based on

how hard you are pressing on the FSR

• Pressing harder should make the light brighter

!15

In-class Exercise 6 Setup
import pyb # import the pyboard module
import time # import the time module

Assign the 4th LED to variable BLUE_LED
BLUE_LED = pyb.LED(4)

Set up the analog-to-digital converter
Remember the pin can be any with ADC func.
fsr_adc = pyb.ADC(pyb.Pin("Y12"))

!16

Wait… what's the algorithm?
• Have linear range of ADC in ~0-4095

• LED.intensity() expects integer from 0-255

• Define a function to map
- Linear is good place to start (y = mx + b)
- Note: Our eyes don't process light this way

• Based on that mapping, set LED intensity

!17

One solution: https://github.com/DocVaughan/
MCHE201---Intro-to-Eng-Design/tree/

Spring-2019/MicroPython/MCHE201%20-%20In-
class%20Exercise%206%20-%2003:14:19

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%206%20-%2003:14:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%206%20-%2003:14:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%206%20-%2003:14:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%206%20-%2003:14:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%206%20-%2003:14:19

Hobby-style Servomotor

!18

Inside a Hobby-style Servomotor

!19

Inside a Hobby-style Servomotor

!19

Inside a Hobby-style Servomotor

!19

Inside a Hobby-style Servomotor

!19

Potentiometer

Servo Pins on the pyboard

!20Image via micropython.org

X1 – X4 are the
pins to control
a servo.

http://micropython.org

Servomotor Hardware Setup

!21

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

Servomotor Core Functions
Define the servo object.
Servo 1 is connected to X1, Servo 2 to X2,
Servo 3 to X3, and Servo 4 to X4
servo1 = pyb.Servo(1)

Now, we can control the angle of the servo
The range of possible angles is -90 < angle < 90,
but many servos can not move over that entire range. -45 to 45 is safer
servo1.angle(45)

Sleep 1s to let it move to that angle
time.sleep(1)

Move to -45 degrees
servo1.angle(-45)

To get the angle, call the .angle() method without an argument
current_angle = servo1.angle()

Move to 45 degrees, taking 2seconds to get there
servo1.angle(45, 2000)

!22

Reading User Input
• We can ask for user input from the REPL using
input()

Now, we'll ask the user for their input
print("Enter the desired angle in
degrees, then press return.")
desired_angle_input = input()

!23

Reading User Input
• We can ask for user input from the REPL using
input()

Now, we'll ask the user for their input
print("Enter the desired angle in
degrees, then press return.")
desired_angle_input = input()

!23

No guarantee the user will input
a reasonable number… or a

number at all.

MUST Check Input
Is it a number?
We can use a try...except block to make sure
the user actually input a number. If not,
we'll use the current angle as the desired.

try:
 # convert to an integer
 desired_angle = int(desired_angle_input)

except ValueError:
 print("Please enter a valid number.")
 print("Remaining at current angle.")
 desired_angle = current_angle

!24

MUST Check Inputs
Is is an acceptable number?

Check that desired angle is within the bounds of the servo
if desired_angle > SERVO_MAX_ANGLE:
 desired_angle = SERVO_MAX_ANGLE
 print("The servo cannot move to that angle.")
 print("Moving to max. angle instead\n".format(desired_angle))

elif desired_angle < SERVO_MIN_ANGLE:
 desired_angle = SERVO_MIN_ANGLE
 print("The servo cannot move to that angle.")
 print("Moving to min. angle instead\n".format(desired_angle))

else:
 print("Moving to desired angle".format(desired_angle))

servo1.angle(desired_angle)

!25

In-class Exercise 7
• Attach a potentiometer
• Have the servo angle track the angle of the

potentiometer

!26

