
MicroPython
Introduction (cont.)

MCHE 201 – Spring 2019

Dr. Joshua Vaughan
Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

mailto:joshua.vaughan@lousiana.edu?subject=
http://twitter.com/doc_vaughan

MicroPython File Review
•boot.py

- Runs every time the
pyboard boots

- Use for setup and
configuration

•main.py
- Executed immediately after
boot.py

- Use for your “main” code
- Can reference other files

!2

boot.py and main.py
are at the "root" of the
PYBFLASH drive (i.e.
They are not in a
folder.)

Review of Using imports
Just prepend the variable or function you want to use
with the “name” that you imported

!3

Import the pyboard functions
import pyb

To use a function from pyb, put pyb.
in front of the function name.
RED_LED = pyb.LED(1)

Review of Using imports
Just prepend the variable or function you want to use
with the “name” that you imported

!3

Import time module
import time

sleep for 1 second
time.sleep(1)

sleep for 500 milliseconds
time.sleep_ms(500)

sleep for 10 microseconds
time.sleep_us(10)

REPL Special Command Review

!4

• Control-d will perform a soft reboot

REPL Special Command Review

!4

• Control-d will perform a soft reboot
• Control-c will kill any running script

REPL Special Command Review

!4

• Control-d will perform a soft reboot
• Control-c will kill any running script
• Control-e will enter paste mode

- Paste as usual
- Use Control-d to exit paste mode

Where can I find help?
• Full – http://docs.micropython.org/en/latest/
pyboard/

• Quick Ref – http://docs.micropython.org/en/
latest/pyboard/pyboard/quickref.html

• REPL specific – http://docs.micropython.org/
en/latest/pyboard/reference/repl.html

• More links coming to class webpage

• If you don’t remember the syntax, look it up

!5

http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://docs.micropython.org/en/latest/pyboard/reference/repl.html
http://docs.micropython.org/en/latest/pyboard/reference/repl.html
http://docs.micropython.org/en/latest/pyboard/reference/repl.html

Recommended Workflow
• Connect the board to your computer and start the

REPL in CoolTerm

• Work on scripts (mostly main.py in MCHE201) in a
local folder with Atom

• Drag edited versions to PYBFLASH

• Control-d in the REPL to perform a soft reboot and
run edited main.py

!6

In-class Exercise 1
• Print the odd numbers between 1 and 27

• Hint: A for loop would be a good way to do this.

!7

There are many ways to do this. A script
with some is at:

https://github.com/DocVaughan/
MCHE201---Intro-to-Eng-Design/tree/
Spring-2019/MicroPython/MCHE201%20-
%20In-class%20Exercise%201%20-
%2003:07:19

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%201%20-%2003:07:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%201%20-%2003:07:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%201%20-%2003:07:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%201%20-%2003:07:19

Exercise 1 – Solution 1
----- Method 1 -----
In this first method, we create a range
of 14 numbers, then simply do the math
to convert the list to odd numbers

for counter in range(14):
 oddNumber = 2 * counter + 1

 print(oddNumber)

!8

Exercise 1 – Solution 2
----- Method 2 -----
Here, we'll use a for loop with a properly
defined range. Here, we use the
extra terms available in the range function.
The order is
range(start, stop, increment)
We have to extend the range past 27 because
the last number listed in not included in the
range.

for counter in range(1, 29, 2):
 print(counter)

!9

Exercise 1 – Solution 4
----- Method 4 -----
Here, we'll use a while loop and increment the
counter ourselves. We'll increment it by 2
each time to only get the odd numbers. We
could also increment by 1 and either do math
on counter to create an odd number, as we did
in Method 1, or use one an if statement, like
we did in Method 3

counter = 1

while counter <= 27:
 print(counter)
 counter = counter + 2

!10

The Onboard Hardware

!11

LED 1
LED 2
LED 3
LED 4

STM32
Processor

Reset ButtonUser Button

Accelerometer

MicroSD

The pyboard

!12Image via micropython.org

http://micropython.org

Controlling the Onboard LEDs
• Numbered 1 – 4
• Follow same pattern as earlier RED_LED example

!13

import pyb # import the pyboard module

Assign the names to the onboard LEDs
RED_LED = pyb.LED(1)
GREEN_LED = pyb.LED(2)
YELLOW_LED = pyb.LED(3)
BLUE_LED = pyb.LED(4)

Onboard LED methods
• For all 4 onboard LEDs

- on() – turn the LED on
- off() – turn the LED off
- toggle() – toggle the state of the LED

• For the third (yellow) and fourth (blue) LEDs
- intensity() – set or get the brightness of the LED

✦ If a number is inside, set to that value (between 0-255)
✦ If no argument, get the current intensity

!14

LED Intensity Example
Assign the 4th LED to variable BLUE_LED
BLUE_LED = pyb.LED(4)

BLUE_LED.on() # Turn fully on
time.sleep(1) # Sleep 1 second

BLUE_LED.intensity(128) # Set to ~1/2 intensity
time.sleep(1) # Sleep 1 second

BLUE_LED.intensity(64) # Set to ~1/4 intensity
time.sleep(1) # Sleep 1 second

BLUE_LED.intensity(1) # Set to min. intensity
time.sleep(1) # Sleep 1 second

BLUE_LED.off() # Turn it off

!15

LED Intensity Example
Assign the 4th LED to variable BLUE_LED
BLUE_LED = pyb.LED(4)

BLUE_LED.on() # Turn fully on
time.sleep(1) # Sleep 1 second

BLUE_LED.intensity(128) # Set to ~1/2 intensity
time.sleep(1) # Sleep 1 second

BLUE_LED.intensity(64) # Set to ~1/4 intensity
time.sleep(1) # Sleep 1 second

BLUE_LED.intensity(1) # Set to min. intensity
time.sleep(1) # Sleep 1 second

BLUE_LED.off() # Turn it off

!15

How could we improve this?

LED Intensity Example – Improved
Assign the 4th LED to variable BLUE_LED
BLUE_LED = pyb.LED(4)

print("Turning on LED")
BLUE_LED.on() # Turn on at full brightness
time.sleep(1) # Sleep 1 second

print("Setting to 1/2 intensity")
BLUE_LED.intensity(128) # Set to ~1/2 intensity
time.sleep(1) # Sleep 1 second

print("Setting to 1/4 intensity")
BLUE_LED.intensity(64) # Set to ~1/4 intensity
time.sleep(1) # Sleep 1 second

print("Setting to min. intensity")
BLUE_LED.intensity(1) # Set to minimum intensity
time.sleep(1) # Sleep 1 second

print("Turning off LED")
BLUE_LED.off() # Turn it off

!16

In-class Exercise 2
• Print the odd numbers between 1 and 27

• When the number is 13, print “Counter = 13... Bad
Luck!!!” and turn on the red LED

• Hint: Modify/extend one of the methods used to solve
Exercise 1.

!17

There are many ways to do this. A script with
some is at:

https://github.com/DocVaughan/MCHE201---Intro-
to-Eng-Design/tree/Spring-2019/MicroPython/
MCHE201%20-%20In-class%20Exercise%202%20-
%2003:07:19

https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%202%20-%2003:07:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%202%20-%2003:07:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%202%20-%2003:07:19
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design/tree/Spring-2019/MicroPython/MCHE201%20-%20In-class%20Exercise%202%20-%2003:07:19

Exercise 2 – Solution 1
import pyb # import the pyboard module

Assign the 1st LED to variable RED_LED
RED_LED = pyb.LED(1)

----- Method 1 -----
for counter in range(14):
 # Same math as Exercise 1
 oddNumber = 2 * counter + 1

 if oddNumber == 13:
 print("Counter = 13... Bad Luck!!!")
 RED_LED.on() # Turn the RED_LED on
 else:
 print(oddNumber)
 RED_LED.off() # Turn the RED_LED off

!18

Exercise 2 – Solution 2
import pyb # import the pyboard module

Assign the 1st LED to variable RED_LED
RED_LED = pyb.LED(1)

----- Method 2 -----
for counter in range(1, 29, 2):

 if counter == 13:
 print("Counter = 13... Bad Luck!!!")
 RED_LED.on() # Turn the RED_LED on
 else:
 print(counter)
 RED_LED.off() # Turn the RED_LED off

!19

Reading the Onboard Button
• It’s a “switch” in MicroPython

• We can:
- Get its current state manually and/or
- Set up code to run automatically any time it’s pressed

• For both, we need to set up a “switch” object

!20

import pyb # import the pyboard module

Assign the Switch object for
the onboard button to variable button
button = pyb.Switch()

Manually Reading the Button
import pyb # import the pyboard module

Assign the Switch object for
the onboard button to variable button
button = pyb.Switch()

call the variable assigned like it’s a
function. It will return True, if pressed.
button()

!21

Reading the Button Indefinitely
import pyb # import the pyboard module
import time # import the time module

Assign the Switch object for the onboard button
to variable button
button = pyb.Switch()

The condition for this while is always true, so
it runs forever
while (True):
 # button() is True if the button is pressed
 if (button()):
 print("Button Pressed!")

 time.sleep_ms(100) # Sleep 100ms between reading

!22

In-class Exercise 3
• Turn on the green LED when the button is pressed

• Turn on the red LED when it is not pressed

!23

