
MicroPython
Introduction

MCHE 201 – Spring 2019

Dr. Joshua Vaughan
Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

mailto:joshua.vaughan@lousiana.edu?subject=
http://twitter.com/doc_vaughan

The pyboard

!2

LED 1
LED 2
LED 3
LED 4

STM32
Processor

Reset ButtonUser Button

Accelerometer

MicroSD

Why Python?

!3Figure via: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Why not Arduino?
• Python is a general-purpose language

- Instagram, Google, etc. use it extensively
- Many robotics tools are built around it
-http://lorenabarba.com/blog/why-i-push-for-python/

• The pyboard is significantly more powerful than
equivalently-priced Arduino boards

!4

http://lorenabarba.com/blog/why-i-push-for-python/

System Setup
• You’ll need a plain-text editor

- Many options that programmers really argue about
- Visual Studio Code – https://code.visualstudio.com

• Bookmark the documentation and quick reference
- Full – http://docs.micropython.org/en/latest/
pyboard/

- Quick Ref – http://docs.micropython.org/en/
latest/pyboard/pyboard/quickref.html

- If you don’t remember the syntax, look it up

!5

https://code.visualstudio.com
http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html

Connecting to the pyboard
• Just plug in Micro-USB cable

• The board will show up as a USB disk with files:
-boot.py
-main.py
-README.txt
-pybcdc.inf

!6

STOP – Before anything else

Save those default files to
a safe place on your

computer!

!7

WARNING!!!
• Do NOT edit the files directly on the PYBFLASH drive

• Instead:
- Work on a version on your computer
- Then, copy that file to the pyboard

• Be sure to eject/unmount before unplugging

!8

The pyboard’s flash memory can get
corrupted much easier than a

normal “thumb drive.”

On Windows…
• You may be asked to set up the device when you

plug it in… cancel that prompt.

• Try to connect to the board first, you likely will not
need to install the driver.

• If you do need to install a driver
- The pybcdc.inf file from the disk is the driver
-http://micropython.org/resources/Micro-Python-
Windows-setup.pdf

!9

http://micropython.org/resources/Micro-Python-Windows-setup.pdf
http://micropython.org/resources/Micro-Python-Windows-setup.pdf

Getting to the REPL
• We’ll talk to the board over serial, often connecting to

the Read, Evaluate, Print, Loop (REPL) prompt
• Like the text editor, there are many options

- On macOS:
✦CoolTerm – http://freeware.the-meiers.org
✦Using screen from the Terminal app
✦goSerial – http://www.furrysoft.de/?page=goserial
✦Serial Tools – http://www.w7ay.net/site/Applications/
Serial%20Tools/index.html

- On Windows:
✦CoolTerm – http://freeware.the-meiers.org
✦HyperTerminal is still installed by default on some dist.
✦Putty – https://www.chiark.greenend.org.uk/~sgtatham/
putty/latest.html

!10

http://freeware.the-meiers.org
http://www.furrysoft.de/?page=goserial
http://www.w7ay.net/site/Applications/Serial%20Tools/index.html
http://www.w7ay.net/site/Applications/Serial%20Tools/index.html
http://www.w7ay.net/site/Applications/Serial%20Tools/index.html
http://freeware.the-meiers.org
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Code Sharing – GitHub.com
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

!11

http://github.com
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

Code Sharing – GitHub.com
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

!11

http://github.com
https://github.com/DocVaughan/MCHE201---Intro-to-Eng-Design

Comments
• Completely ignored by the Python interpreter

• Comments allow you to explain your code inline for:
- your co-workers/teammates
- you, in the future

• To comment a single line, use # before your comment

• To create a block comment, begin with """ and end
with """

!12

Comments
""" This is a block comment. It will
continue across multiple lines, until it
is closed with the proper characters """

This is a single-line comment

x = 4 # Comments can go here too

!13

Block Comments
• Block comments are also a good way to begin any

file you write.

• It's good practice to include:
- The filename
- The purpose of the code
- Any external requirements (other files or hardware

needed to make this one work)
- What inputs are needed, if any
- What the output is, if any
- The version number, recent modifications, and your

contact info

!14

Block Comments – Boilerplate
"""--
filename.py

Some description of functionality

Optional links to relevant documentation

Created: mm/dd/yy - Name - email@louisiana.edu

Modified:
 * mm/dd/yy - Name (email if not same person as above)
 - major change 1
 - major change 2
 * mm/dd/yy - Name (email if not same person as above)
 - major change 1
--"""

!15

Block Comments – Boilerplate
--
filename.py

Some description of functionality

Optional Link to relevant documentation

Created: mm/dd/yy - Name - email@louisiana.edu

Modified:
* mm/dd/yy - Name (email if not same person as above)
- major change 1
- major change 2
* mm/dd/yy - Name (email if not same person as above)
- major change 1
--

!16

Block Comments – Example

main.py

This script will control a single DC motor using a Texas Instruments DRV8871
motor driver. It should work with all DRV8871 driver breakouts, but has only
been tested with the Adafruit one:
https://www.adafruit.com/product/3190

Motor driver spec sheet
https://cdn-shop.adafruit.com/product-files/3190/drv8871.pdf

Adafruit Overview of the board:
https://learn.adafruit.com/adafruit-drv8871-brushed-dc-motor-driver-breakout

Created: 11/06/17
- Joshua Vaughan
- joshua.vaughan@louisiana.edu
- http://www.ucs.louisiana.edu/~jev9637

Modified:
*

TODO:
*
###

!17

https://cdn-shop.adafruit.com/product-files/3190/drv8871.pdf

Literate Programming
• Write out what you want your code to do in plain

English (or your preferred language)… Be explicit
about every step

• Translate this into comments in your code file

• Then, write the code to implement the functionality

!18

Key Point: If you can't explain what you want
the code to do in plain English, writing code

to do that will be difficult.

Variables in Python
• Unlike Arduino (or other C-based languages), we

don’t need to specify the variable type

• Python is a dynamically-typed language
- It will figure out what type of variable you need
- That type can/will change if you reassign the variable to

a different type

!19

TIP: Give your variables meaningful
names. A few extra keystrokes are
worth the improved understanding

and easier debugging.

Variable Declaration Examples
Booleans are True or False.
binaryConditionCheck = False
youCantHandleThe = True

Integers are, well, integers
integerVariable = -1
motorSpeed = 75

Floats are decimal numbers
floatVariable = 1.0
preciseMotorSpeed = 75.275

Strings hold text, put between "-"
myString = "some text"

!20

Variable Declaration (cont.)
We can assign multiple variables at the
same time
#
Note: Be careful with this, only group
variables that make sense to
group logically.

small, medium, large = 1, 3, 9
IP_ADDRESS, PORT = "192.168.0.100", 2390

!21

Variable Naming Conventions
• Give your variables meaningful names

- armLength = 15 is much clearer than l = 15
- delay_time = 0.25 is much clearer than t = 0.25

• Use a consistent variable style
- camel case – armLength
- Underscores for spaces – delay_time
- All caps for constants – LED_PIN

!22

} Pick one of
these and
stick to it

Variable Scope
• Scope – essentially what functions are able to read/

write to a particular variable

• Variables defined:
- Outside of all functions have global scope

✦Can be read anywhere
✦Need some special syntax to write to them

- Inside a function are accessible inside that function

• Limit scope to as small as possible

!23

def myMultiplyFunction(x, y):
 result = x * y
 return result

• In Python, whitespace matters
• Note: All of these have more formal names.

Python Functions

!24

The Function Name

Input
Variable
NamesReturn Definition

Must Space/tab Consistently

Says "This is a
function"

TIP: Give your
functions

meaningful
names. A few

extra
keystrokes

are worth the
improved

understanding
and easier
debugging.

To Use That Function
def myMultiplyFunction(x, y):
 result = x * y
 return result

Assign values to a and b
a = 2
b = 3

Call the function, and store the result in c
c = myMultiplyFunction(a, b) # c=6

This works fine with other types too
a, b = 1.2, 3.75
c = myMultiplyFunction(a, b) # c=4.5

!25

Use Functions!!!
• Aim for each function having a single function

• This makes:
- execution more predictable and easier to debug
- the code more-easily reusable

✦Reuse limits likelihood of typos and other bugs
✦Makes code more readable
✦Makes program logic easier to follow

!26

TIP: Give your functions meaningful
names. A few extra keystrokes are
worth the improved understanding

and easier debugging.

Example
wait_for_start_button()

pyb.delay_ms(500) # pause 500ms after start button

drive_forward(4) # drive forward 4 seconds

rotate_arm(75) # rotate the arm 75 deg

pyb.delay_ms(1000) # Pause for 1000ms (1s)

rotate_arm(0) # rotate the arm back to 0

drive_backward(2) # drive backward 2 seconds

!27

How do I debug my code?
• The computer will only do exactly what you tell it.

Nothing more. Nothing less.

• Don’t assume anything!… the computer is dumb.
- Work line-by-line “What happens on this line?”
- Output values in runtime via print statements

!28

Using the REPL
• Allows the pyboard to

communicate with the
computer during
runtime

• Can be used for:
- Prototyping
- Debugging
- Execution monitoring

!29

Clarity in the print Statements
• We can format the numbers/items that we print out.
• A great overview: https://pyformat.info
• Syntax is:

!31

print("String {formatting spec}".format(variable))

https://pyformat.info

Formatted Output Examples
Print an integer
print("Integer {:d}.".format(42))

Print an integer and always include +/- sign
print("Integer {:+d}.".format(42))

Print an integer and always include at least 4
#"places"
print("Integer {:4d}.".format(42))

Print an integer, always include at least 4
#"places," and pad with zeros
print("Integer {:04d}.".format(42))

!32

Formatted Output (cont.)
Print a float
print("Pi is {:f}.".format(3.141592))

Print a float with 4 decimal places
print("Pi is {:.4f}.".format(3.141592))

Print a float and always include at least 9
#"places" with 2 decimal places
print("Pi is {:9.2f}.".format(3.141592))

Print a float and always include at least 9
#"places" and pad with zeros
print("Pi is {:09.2f}.".format(3.141592))

!33

Special Characters to Know
• \n = new line
• \r = carriage return
• \t = tab

!34

Define pi
pi = 3.141592

print("Pi is {:.4f}.\n2pi is {:.4f}".format(pi, 2*pi))

print("Pi is {:.4f}.\t2pi is {:.4f}".format(pi, 2*pi))

Control Structures
• Numerous ways to control program flow

• Ways to conditionally execute
- If… then
- For loops
- While loops

!35

Comparison Operators
----- Comparison syntax --------------------------
These evaluate to True (1) or False (0)

 x == y # True if x is equal to y, False otherwise

 x != y # True if x is not equal to y, False otherwise

 x < y # True if x is less than y, False otherwise

 x > y # True if x is greater than y, False otherwise

 x <= y # True if x is less than or equal to y, False
otherwise

 x >= y # True if x is greater than or equal to y,
False otherwise

!36

If… then Example
----- if... elif... else example --------------------
Note: this assumes all variables have been defined,
etc.

if (counter < 10):
Code indented here will run if counter is less than
10

elif (counter >= 20):
Code indented here will run if counter is greater
than or equal to 20

else:
Code indented here will only run if both counter is
neither less than 10 or greater than or equal to 20

!38

If… then Example 2
a = 2 # Define the value of a

if (a > 5):
print("Tell me something, girl")

elif (a == 2):
print("Are you happy in this modern world")

else:
print("Or do you need more?")

!39

Here, a is equal to 2, so the elif condition is True.
The code indented under it is run, meaning Are you
happy in this modern world would be printed.

If… then Example 3
a = 2 # Define the value of a
b = 3 # Define the value of b

if (a + b > 5):
print("Kiki, do you love me?")

elif (b - a == 2):
print("Are you riding?")

else:
print("Say you'll never ever leave...")

!40

Neither the if or the elif condition is True. So, the
code in else is run, meaning Say you'll never ever
leave... would be printed.

If… then Example 4
sensedStartSignal = True # Start was sensed

if (sensedStartSignal):
print("Sensed start signal. Starting robot.")
Code to run once the start signal was sensed

else:
print("Checking start signal...")
Code to check the start signal

!41

The if is True. So, the code in if is run, meaning
Sensed start signal. Starting robot. would be printed
and other code in that indented block would run.

Basic For Loops
----- for loop syntax ---------------------------
for counter in sequence:
 # do something
Everything indented here is run during each
loop until the sequence is finished

!42

Basic For Loops
----- for loop syntax ---------------------------
for counter in sequence:
 # do something
Everything indented here is run during each
loop until the sequence is finished

----- for loop example --------------------------
for counter in range(10):
do something
This would run 10 times
The values of counter would be 0, 1, 2, …, 9

!42

Variable that's
incremented

What to loop over... a few options for what

For Loop Example
list_of_pies = ["apple", "cherry", "pumpkin"]

for pie in list_of_pies:
print("I think {} pies are delicious!".format(pie))

!43

Prints out to the REPL:
I think apple pies are delicious!
I think cherry pies are delicious!
I think pumpkin pies are delicious!

For Loop Example
list_of_pies = ["apple", "cherry", "pumpkin"]

for index, pie in enumerate(list_of_pies):
print("The number {:d} pie in the list is
{}.".format(index, pie))

!44

Prints out to the REPL:
The number 0 pie in the list is apple.
The number 1 pie in the list is cherry.
The number 2 pie in the list is pumpkin.

While Loops
// ----- while loop syntax -------------------------

while (condition == True):

If the condition is True, run the code here.

Once the code in the indented block is
finished, check the condition and repeat.

If the condition is not True at the first check
above, this will never be run.

!45

The condition is tested at the
beginning of each iteration

While Loop Example
----- while loop example ---------------------
index = 0

while (index < 10):
print("Index = {:d}".format(index))
index = index + 2

!46

Prints
Index = 0
Index = 2
Index = 4
Index = 6
Index = 8

While Loop Example 2
----- while loop example ---------------------
index = 0

while (index < 10):
if (index == 3):
print("Index = {}".format(index))

index = index + 1

!47

Prints to the Serial Monitor
Index = 3

While Loop Example 3
----- while loop example -----------------------
keepRunning = True
index = 0

while(keepRunning):
print("Running.")

if (index >= 10):
keepRunning = False

pyb.delay(100) # sleep 100ms

index = index + 1

print("Stopped.")

!48

Loops 10 times, printing
“Running” and delaying
100ms each time. Then,
prints “Stopped.”

For next Thursday…
• BEFORE next week:

- Install the driver, if necessary for Windows.
- Install Visual Studio Code (or other text editor) on your

computer.
- Install CoolTerm on your computer.
- Look through these notes. These are the foundation for

all the programming we’ll do.
- Review the MicroPython Getting Started Guide at
http://docs.micropython.org/en/latest/pyboard/
pyboard/tutorial/index.html

• Bring laptop and kit to class

!49

http://docs.micropython.org/en/latest/pyboard/pyboard/tutorial/index.html
http://docs.micropython.org/en/latest/pyboard/pyboard/tutorial/index.html

