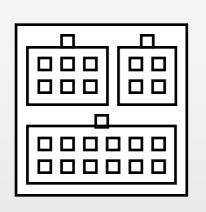
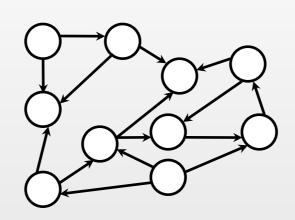


Management & Planning Tools MCHE 201 – Spring 2019

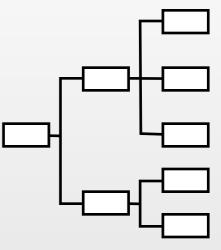
Dr. Joshua Vaughan

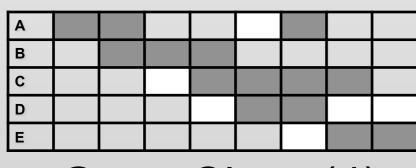

Rougeou 225

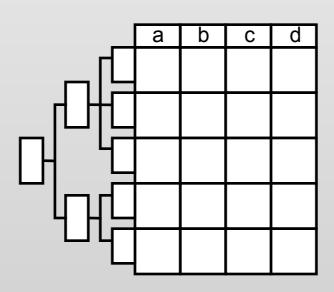
joshua.vaughan@louisiana.edu

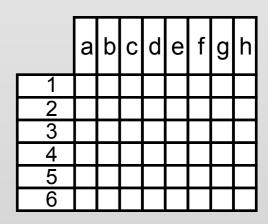

@Doc_Vaughan

Management & Planning Tools

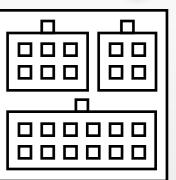



Affinity Diagram (1)

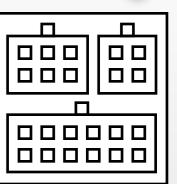

Interrelationship Diagraph (2)

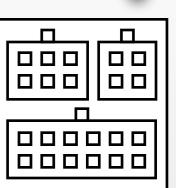

Tree Diagram (3)

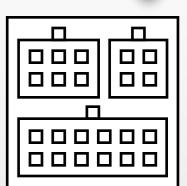
Gantt Chart (4)



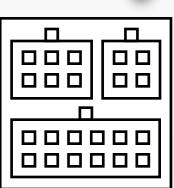
Prioritization Matrices (5)


Matrix Diagram (6)

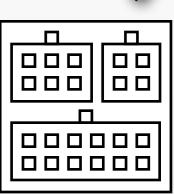

• Purpose:



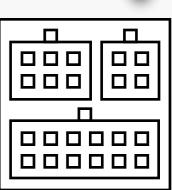
- Purpose:
 - Creative process (generate & organize ideas)


- Purpose:
 - Creative process (generate & organize ideas)

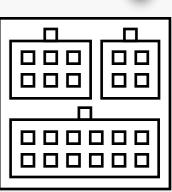
Start with:


- Purpose:
 - Creative process (generate & organize ideas)

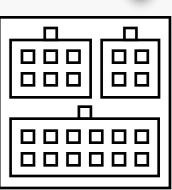
- Start with:
 - What is issue under discussion?


- Purpose:
 - Creative process (generate & organize ideas)

- Start with:
 - What is issue under discussion?
- Then:


- Purpose:
 - Creative process (generate & organize ideas)

- Start with:
 - What is issue under discussion?
- Then:
 - Brainstorm ideas


- Purpose:
 - Creative process (generate & organize ideas)

- Start with:
 - What is issue under discussion?
- Then:
 - Brainstorm ideas
- Then:

- Purpose:
 - Creative process (generate & organize ideas)

- Start with:
 - What is issue under discussion?
- Then:
 - Brainstorm ideas
- Then:
 - Gather ideas under affinity headings

 Reduce Data Entry Complexity (Selling, Leasing, Tracking Products)

Error

Prevention

Error Prevention

Problem Solving

Display Only Critical Info. On Screen

Shorten 11-Digit Product Code

Automated Entry

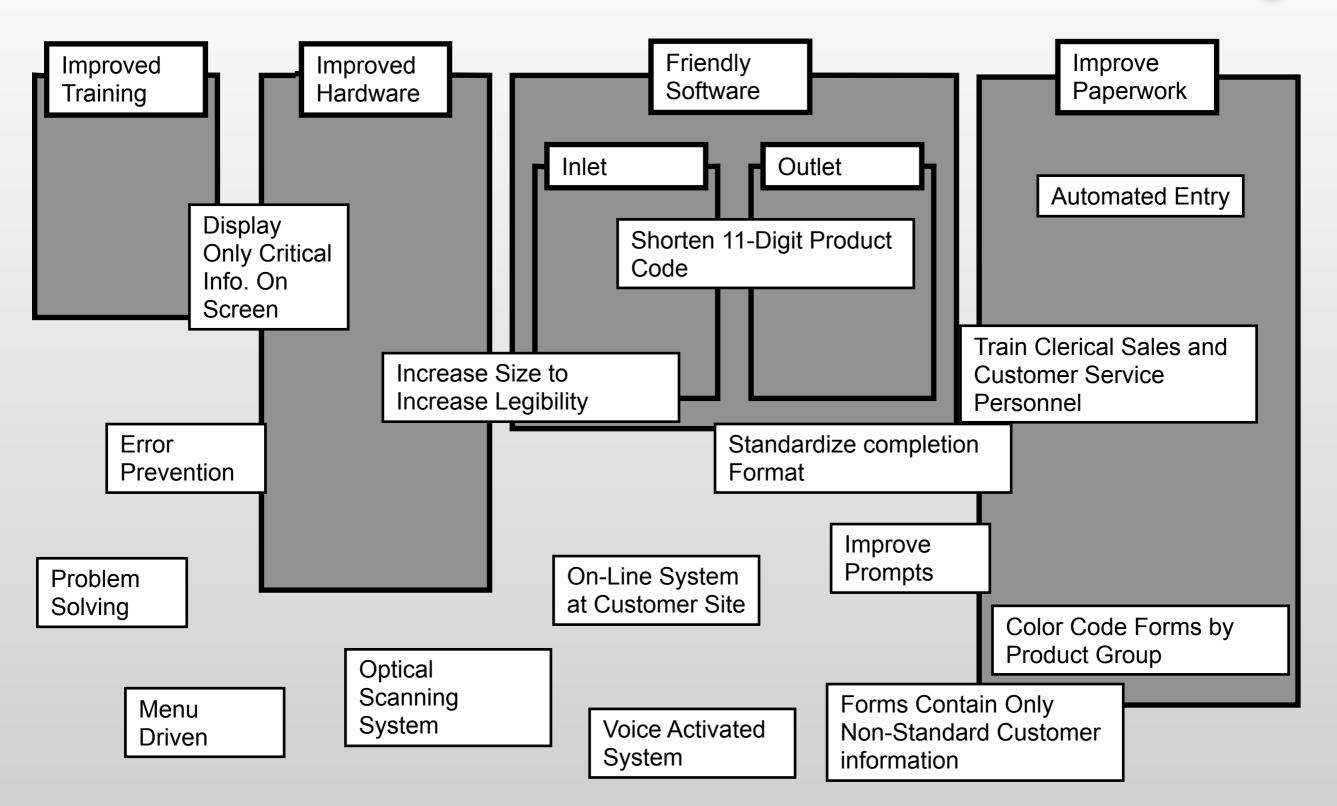
Increase Size to Increase Legibility

Train Clerical Sales and Customer Service Personnel

Error Prevention Standardize completion Format

Problem Solving

On-Line System at Customer Site


Improve Prompts

Menu Driven Optical Scanning System

Voice Activated System Color Code Forms by Product Group

Forms Contain Only Non-Standard Customer information

Improved Training

Error Prevention

Problem Solving

Improved Hardware

Optical Scanning System

On-Line System at Customer Site

Voice Activated System

Automated Entry

Friendly Software

Inlet

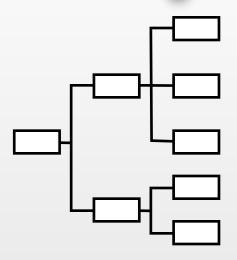
Menu Driven

Improve Prompts Outlet

Display Only Critical Info. On Screen Improve Paperwork

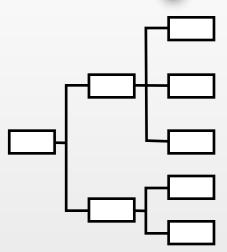
Train Clerical Sales and Customer Service Personnel

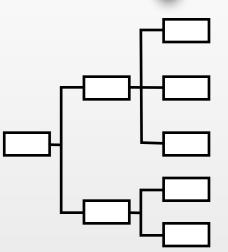
Shorten 11-Digit Product Code


Forms Contain Only Non-Standard Customer information

Standardize completion Format

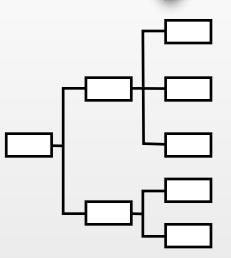
Increase Size to Increase Legibility


Color Code Forms by Product Group



- Purpose:
 - Show paths and tasks to accomplish primary goal and its related sub-goals

- Purpose:
 - Show paths and tasks to accomplish primary goal and its related sub-goals

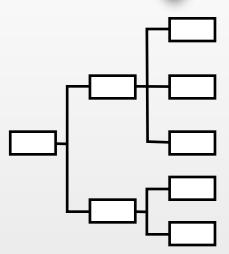


- First:
 - List main what (goal)

Purpose:

 Show paths and tasks to accomplish primary goal and its related sub-goals

• First:

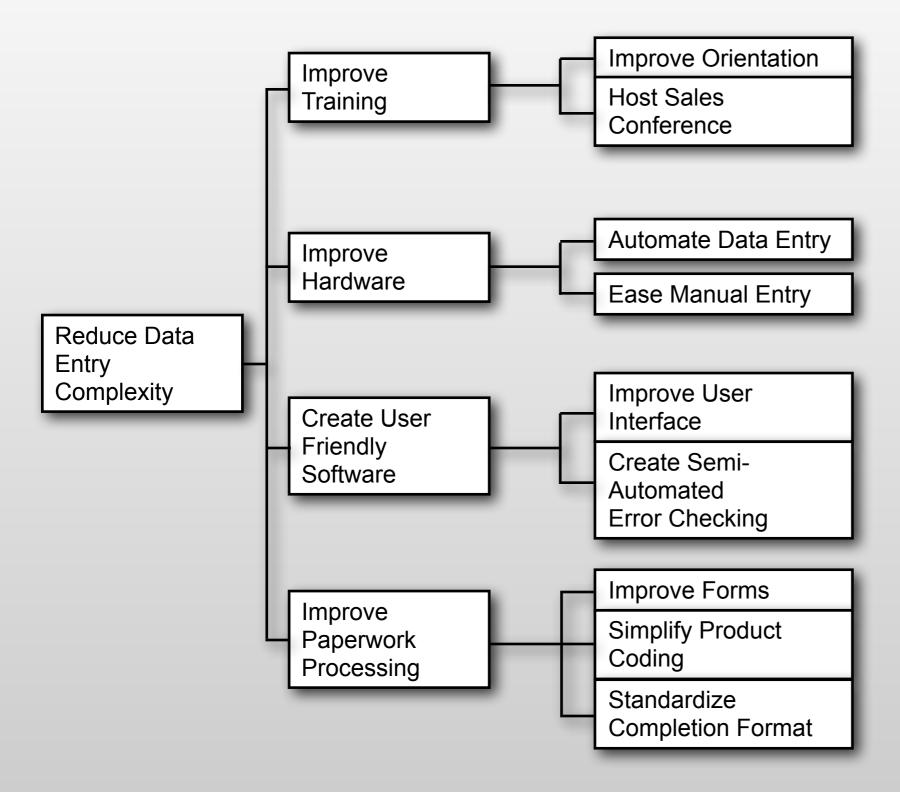

List main what (goal)

• Then:

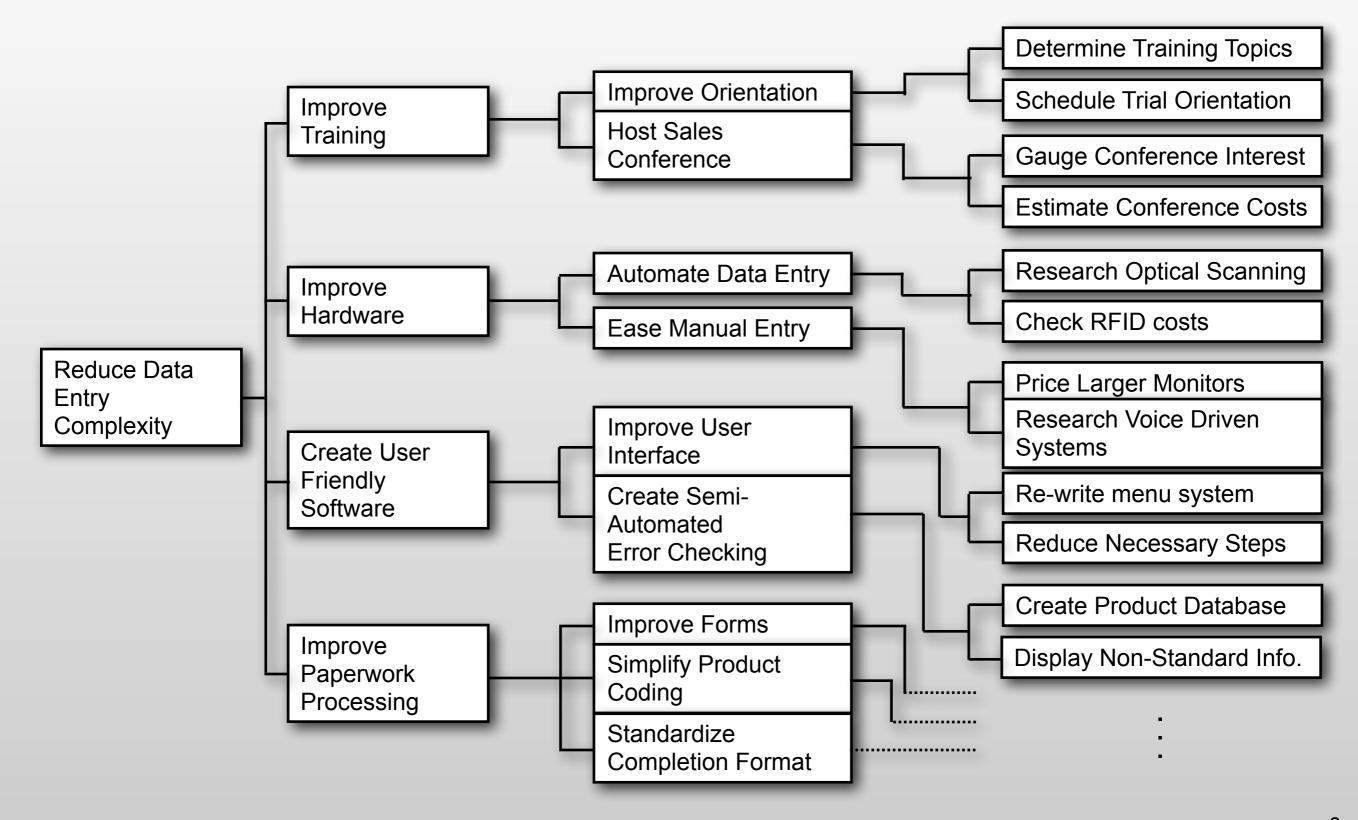
- List "Hows" (means)
- These become goals ("Whats") for next level

- Purpose:
 - Show paths and tasks to accomplish primary goal and its related sub-goals


- First:
 - List main what (goal)
- Then:
 - List "Hows" (means)
 - These become goals ("Whats") for next level
- Continue until you get to assignable tasks



Reduce Data Entry Complexity



Α				
В				
С				
D				
E				

- Purpose:
 - Plan work on a project
 - Schedule work on project
 - Track project progress

Α				
В				
С				
D				
Е				

Purpose:

- Plan work on a project
- Schedule work on project
- Track project progress

Α				
В				
С				
D				
Е				

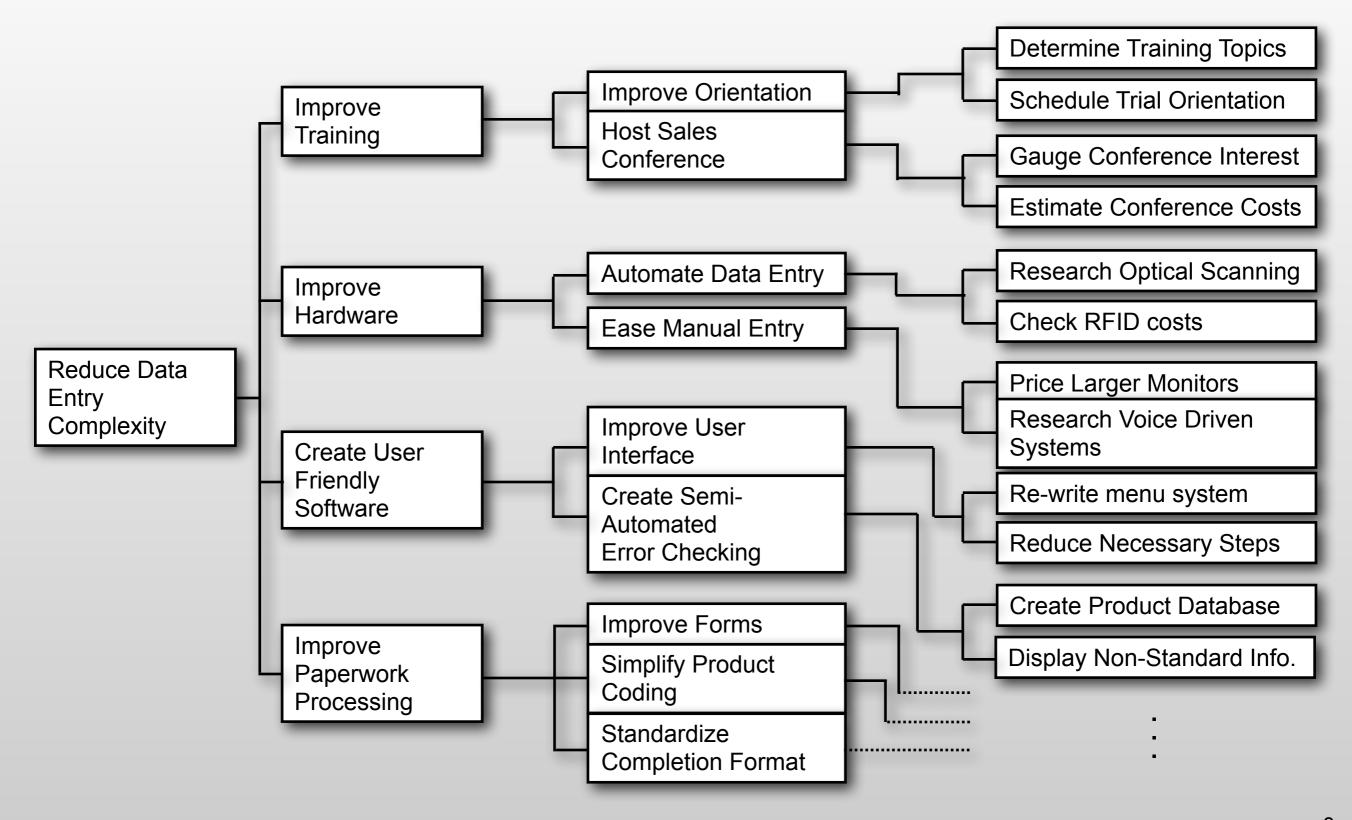
• First:

- Define overall project goals
- Identify main due dates/deadlines/milestones

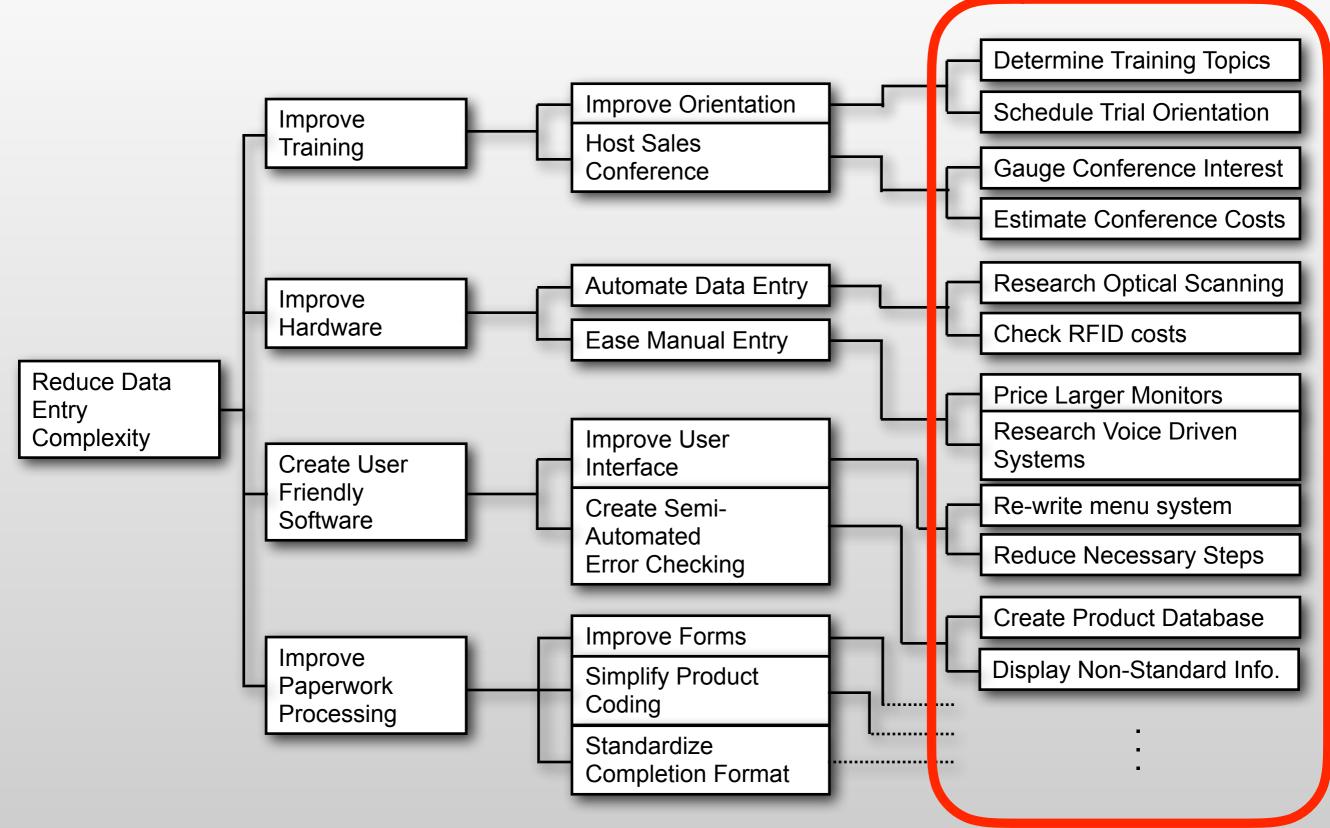
Purpose:

- Plan work on a project
- Schedule work on project
- Track project progress

Α				
В				
С				
D				
Е				


• First:

- Define overall project goals
- Identify main due dates/deadlines/milestones


• Then:

- Work back in time
- Set goal dates

Gantt Chart Example

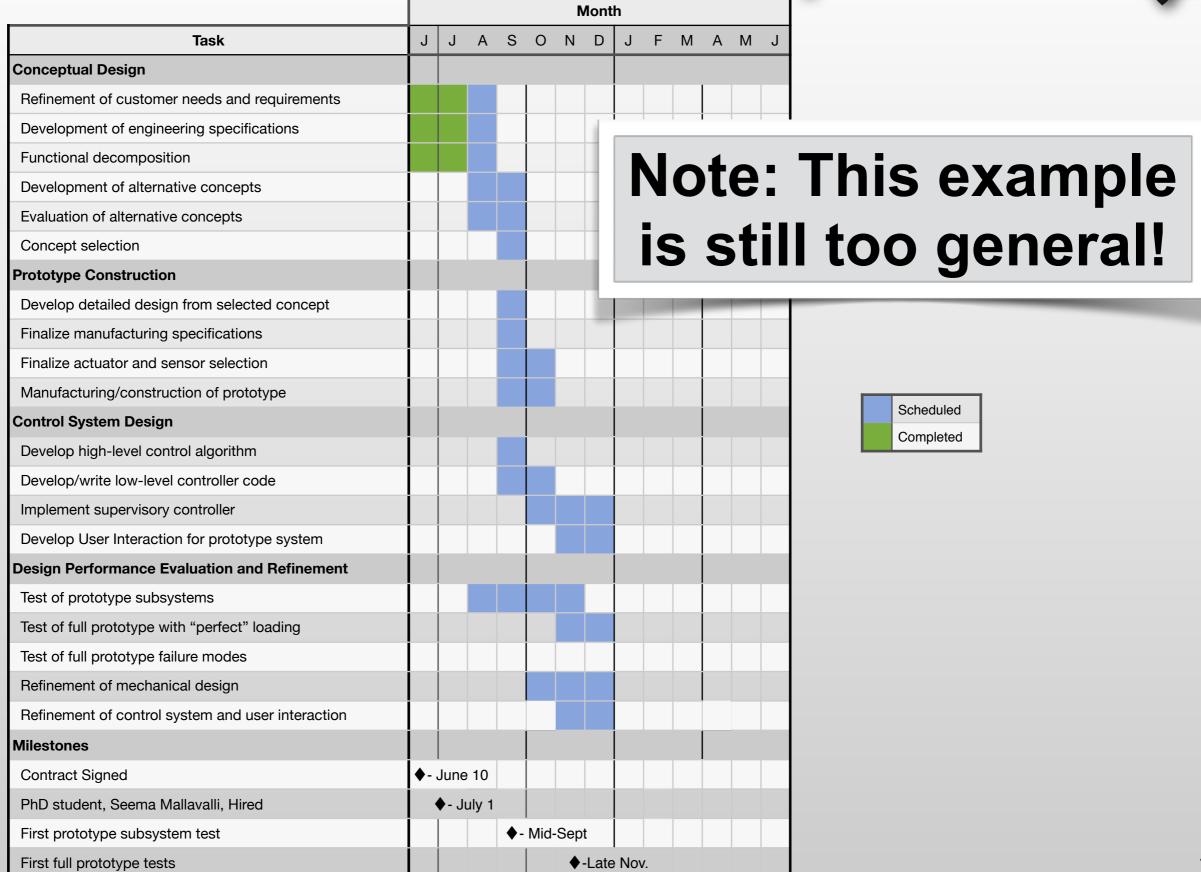
Task	2013	3 2014
Pre-Project Activities		
Advertise ARLISS Project		
Recruit Top Students		
Initial Design Activities		
Identify Key Requirements		
Conceptual Design		
Concept Prototyping and Evaluation		
Competing Prototype Construction		
Prototype Evaluation and Design Iteration		
Evaluate ARLISS Performance		
Develop Revised Conceptual Designs		
Milestones		
2014 Entry Construction Completed		♦-Aug.
2014 Competition		♦-Sept.
2014 Capstone Exhibition		Dec-◆

Gantt Chart Example

Task	2013	2014	
Pre-Project Activities			
Advertise ARLISS Project			
Recruit Top Students			
Initial Design Activities			
Identify Key Requirements			
Conceptual Design			
Concept Prototyping and Evaluation			
Competing Prototype Construction			
Prototype Evaluation and Design Iteration			
Evaluate ARLISS Performance			
Develop Revised Conceptual Designs			
Milestones			
2014 Entry Construction Completed		♦-Aug.	
2014 Competition		♦ -Se	ept.
2014 Capstone Exhibition			Dec-♦

Note: This example is way too general!

A More-detailed Example



						N	/lont	h					
Task	J	J	Α	S	0	N	D	J	F	М	Α	М	J
Conceptual Design													
Refinement of customer needs and requirements													
Development of engineering specifications													
Functional decomposition													
Development of alternative concepts													
Evaluation of alternative concepts													
Concept selection													
Prototype Construction	Ī												
Develop detailed design from selected concept	Γ												
Finalize manufacturing specifications													
Finalize actuator and sensor selection	ĺ												
Manufacturing/construction of prototype	ĺ												
Control System Design	ĺ												
Develop high-level control algorithm	Ĺ												
Develop/write low-level controller code	ĺ												
Implement supervisory controller	ĺ												
Develop User Interaction for prototype system	Ī												
Design Performance Evaluation and Refinement													
Test of prototype subsystems	Ĺ												
Test of full prototype with "perfect" loading	ĺ												
Test of full prototype failure modes	İ												
Refinement of mechanical design	ĺ												
Refinement of control system and user interaction	Ĺ												
Milestones	İ												
Contract Signed	\\$ -	June	10										
PhD student, Seema Mallavalli, Hired	İ .	♦ - Jι	uly 1										
First prototype subsystem test				\Phi -	Mid-	Sep	t						
First full prototype tests	ĺ					•	-Late	· Nov	/ .				

Scheduled Completed

A More-detailed Example

Another Example

Task	Complete or Underway	Year 1	Year 2	Year 3	Year 4	Year 5
Research Plan						
Commands and Controllers	i i					
Develop criteria for evaluation						
Develop benchmark models						
Add actuator and nonlinear dynamics						
Quantify and compare pairings						
Develop heuristics-based design process						
Develop optimal design procedure						
Experimentally evaluate designs						
Commands, Controllers, and Mechanical						
Develop benchmark models						
Add actuator and nonlinear dynamics						
Quantify and compare pairings						
Develop heuristics-based design process						
Develop optimal design procedure						
Experimentally evaluate designs						
Complete case-study for robotic arm						
Including the Human						
Obtain IRB approval for operator studies						
Crane operator study and evaluation						
Aerial lift operator study and evaluation						
Develop and implement operator study "game"						
Advantages of Robot Flexibility						
Quantify jumping performance						
Investigate jumping of more complex systems						
Evaluate concurrently designed jumping robot						
Model and control walking and running						
Quantify energy savings with compliant legs						
Education Plan						
Project-based Robotics and Controls Courses						
Robotics Tech. Elective at UL Lafayette						
Robotics-based design class						
High school inclusion in Robotics courses						
Extracurricular Robotics and Controls Projects						
ARLISS contest						
Maritime RobotX competition						
Production of Interactive Teaching Modules						
Develop interactive robotics eBooks						
Release IPython notebooks via GitHub						
Develop and Release Lab Exercises						
Undergraduate Research Experiences						
Promote undergraduate research						
Submit NSF REU proposal						
International Experiences						
Promote international collaboration						
Prepare and submit JSPS Bridge application						
Spend Summer Research in Japan						

Another Example

Task	Complete or Underway	Year 1	Year 2	Year 3	Year 4	Year 5
Research Plan						
Commands and Controllers						
Develop criteria for evaluation						
Develop benchmark models						
Add actuator and nonlinear dynamics						
Quantify and compare pairings						
Develop heuristics-based design process						
Develop optimal design procedure						
Experimentally evaluate designs						
Commands, Controllers, and Mechanical						
Develop benchmark models						
Add actuator and nonlinear dynamics						
Quantify and compare pairings						
Develop heuristics-based design process						
Develop optimal design procedure						
Experimentally evaluate designs						
Complete case-study for robotic arm						
Including the Human						
Obtain IRB approval for operator studies						
Crane operator study and evaluation						
Aerial lift operator study and evaluation						
Develop and implement operator study "game"						
Advantages of Robot Flexibility						
Quantify jumping performance						
Investigate jumping of more complex systems						
Evaluate concurrently designed jumping robot						
Model and control walking and running						
Quantify energy savings with compliant legs						
Education Plan						
Project-based Robotics and Controls Courses						
Robotics Tech. Elective at UL Lafayette						
Robotics-based design class						
High school inclusion in Robotics courses						
Extracurricular Robotics and Controls Projects						
ARLISS contest						
Maritime RobotX competition						
Production of Interactive Teaching Modules						
Develop interactive robotics eBooks						
Release IPython notebooks via GitHub						
Develop and Release Lab Exercises						
Undergraduate Research Experiences						
Promote undergraduate research						
Submit NSF REU proposal						
· ·						
International Experiences						
Promote international collaboration						
Prepare and submit JSPS Bridge application						
Spend Summer Research in Japan						

Note: This example is still too general!

What's the goal?

What's the goal?

 What "sub-goals" are needed to achieve the main goal?

What's the goal?

 What "sub-goals" are needed to achieve the main goal?

What "sub-sub-goals"... "sub-sub-sub-goals"...

What's the goal?

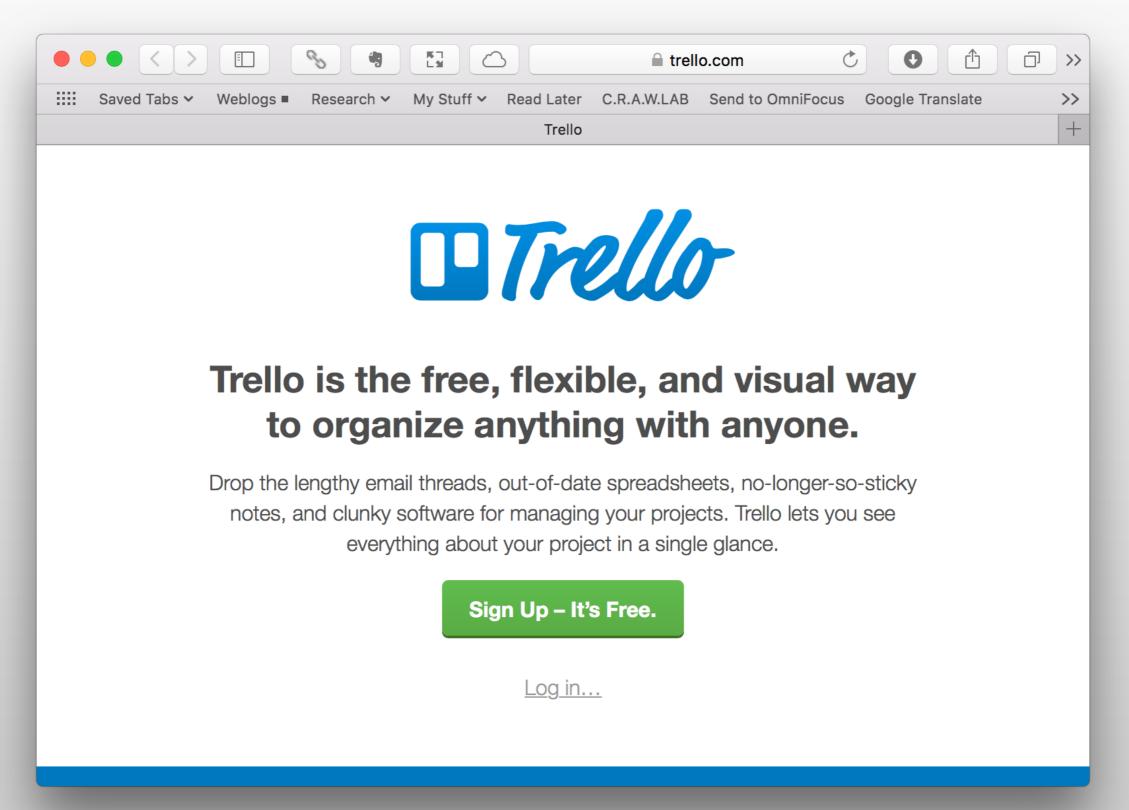
 What "sub-goals" are needed to achieve the main goal?

What "sub-sub-goals"... "sub-sub-sub-goals"...

What tasks are needed to accomplish each sub^N-goal?

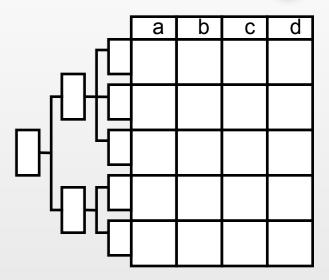
What's the goal?

 What "sub-goals" are needed to achieve the main goal?

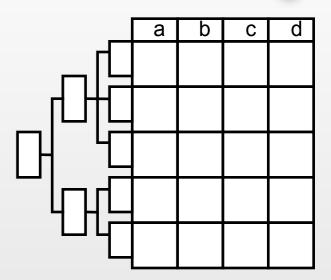

What "sub-sub-goals"... "sub-sub-sub-goals"...

What tasks are needed to accomplish each sub^N-goal?

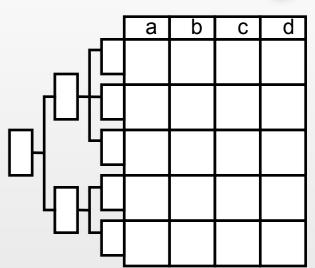
Include any milestones or deadlines


Online Tools Exist for This Too

Prioritization Matrix



Prioritization Matrix


- Purpose:
 - To prioritize items:
 - ◆ Prioritization against themselves
 - ◆ Prioritization against criteria

Prioritization Matrix

- Purpose:
 - To prioritize items:
 - ◆Prioritization against themselves
 - ◆Prioritization against criteria

This allows you to focus limited resources

		Α
Taste	А	X
Smell	В	+
Not Poisonous	С	-
Color	D	-
Temperature	Ш	-

Is Smell (B) more or less important than Taste (A)?

Is Not Poisonous (C) more or less important than Taste (A)?

Is Color (D) more or less important than Taste (A)?

Is Temp. (E) more or less important than Taste (A)?

		Α	В
Taste	Α	X	-
Smell	В	+	X
Not Poisonous	С	-	-
Color	D	-	-
Temperature	E	-	-

Is Taste (A) more or less important than Smell (B)?

Is Not Poisonous (C) more or less important than Smell (B)?

Is Color (D) more or less important than Smell (B)?

Is Temp. (E) more or less important than Smell (B)?

		Α	В	С
Taste	А	X	ı	+
Smell	В	+	X	+
Not Poisonous	С	-	-	Х
Color	D	-	-	-
Temperature	E	-	-	+

Is Taste (A) more or less important than Not Poisonous (C)?
Is Smell (B) more or less important than Not Poisonous (C)?

Is Color (D) more or less important than Not Poisonous (C)? Is Temp (E) more or less important than Not Poisonous (C)?

Continue filling the chart this way...

		Α	В	С	D	Е
Taste	Α	X	-	+	+	+
Smell	В	+	X	+	+	+
Not Poisonous	С	-	-	Х	+	-
Color	D	-	-	-	Х	-
Temperature	Ш	-	-	+	+	Х

		Α	В	С	D	E
Taste	А	X	ı	+	+	+
Smell	В	+	X	+	+	+
Not Poisonous	С	-	-	X	+	-
Color	D	-	-	-	X	-
Temperature	Е	-	-	+	+	X

		Α	В	С	D	Е			%
Taste	А	X	-	+	+	+	Σ_{R_1}	0.2923	29.23
Smell	В	+	Х	+	+	+	$\Sigma_{R_2/}$ Σ_{C}	0.3846	38.46
Not Poisonous	С	-	-	Х	+	-	Σ_{R_3/Σ_C}	0.1077	10.77
Color	D	-	1	-	X	-	$\Sigma_{R_4}/$ Σ_{C}	0.0154	1.54
Temperature	Ш	-	1	+	+	X	${\Sigma_{R_{S}}}/{\Sigma_{C}}$	0.2000	20.00
		+= 5	- =	= 1/5			52 Σ _C		

Total | 100.00

18

Matrix Diagram

	а	b	С	d	е	f	g	h
1								
2								
3								
4								
5								
6								

Matrix Diagram

- Purpose:
 - To show relations between two sets
 - To show strength of relations

_								
	а	b	С	d	е	f	g	h
1								
2								
3								
4								
5 6								
6								

Matrix Diagram

- Purpose:
 - To show relations between two sets
 - To show strength of relations

	а	b	С	d	е	f	g	h
1								
2								
3								
4								
5 6								
6								

- Basic types
 - QFD
 - Job responsibilities

	Boss	Organizer	Staff Person
Travel			
Pick Date			
Schedule			
Benefits Discussion			
Dinner			
Follow-up			

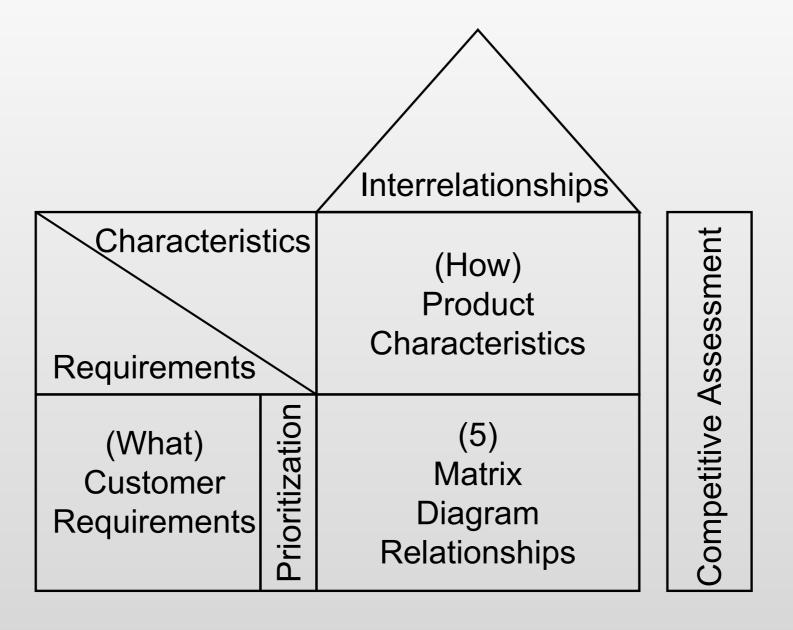
	Boss	Organizer	Staff Person
Travel			
Pick Date			
Schedule			
Benefits Discussion			
Dinner			
Follow-up			

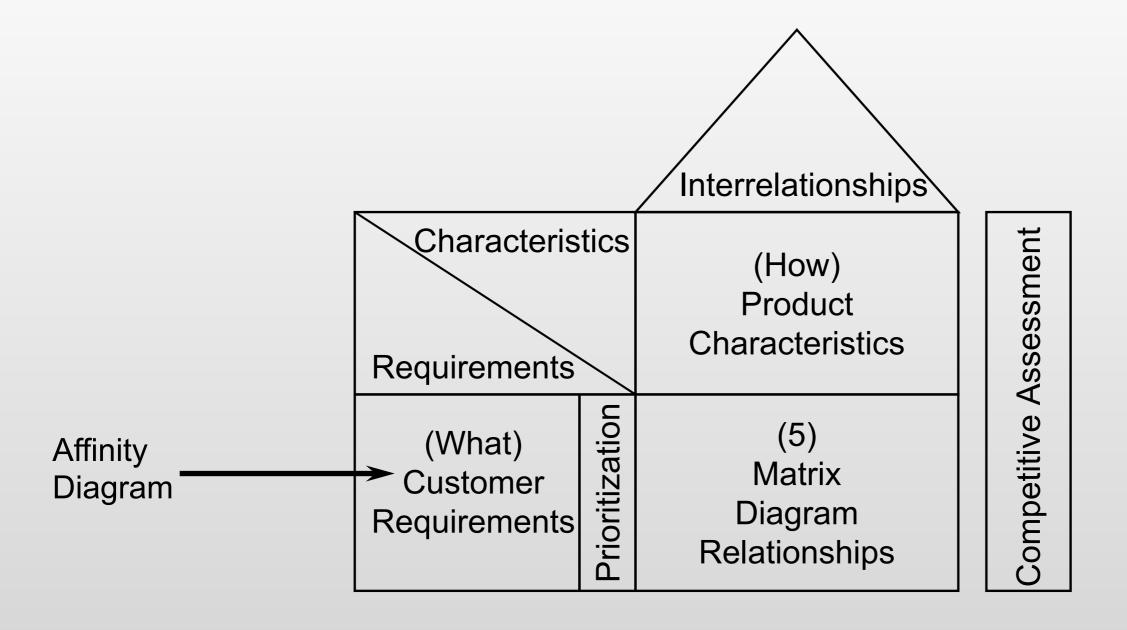
Primary Responsibility	*
Secondary Responsibility	->
Needs to Know	

	Boss	Organizer	Staff Person
Travel		*	*
Pick Date			
Schedule			
Benefits Discussion			
Dinner			
Follow-up			

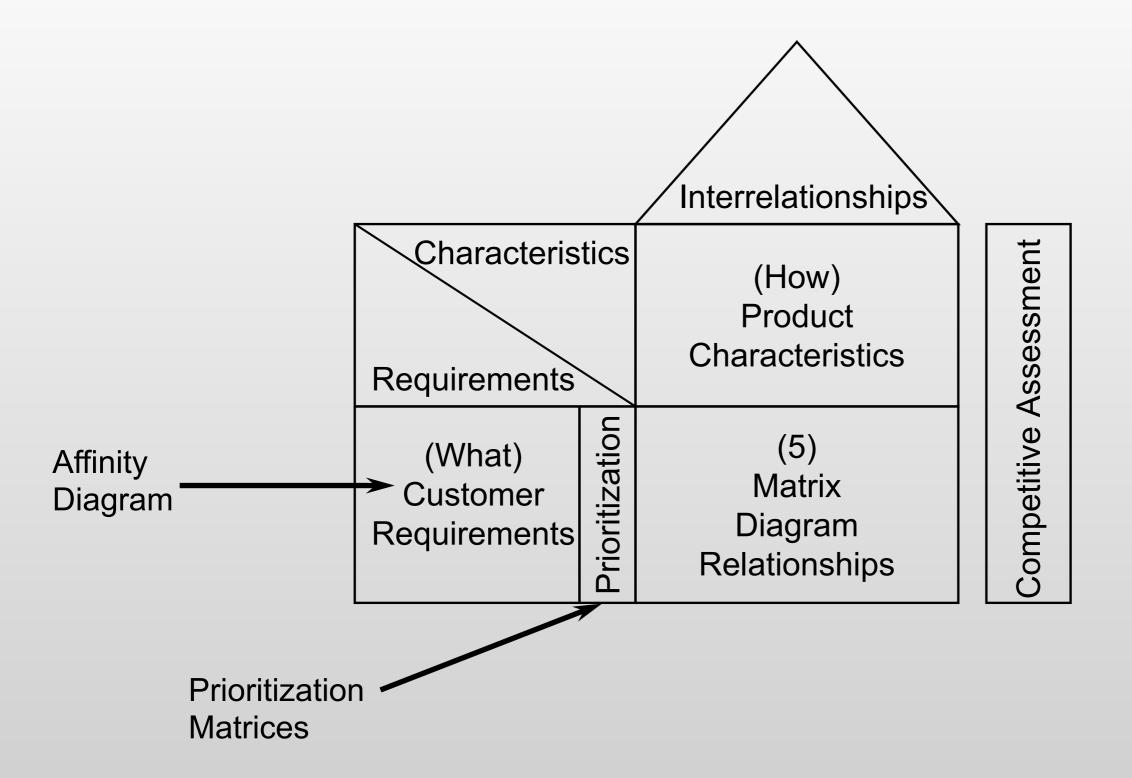
Primary Responsibility	*
Secondary Responsibility	->
Needs to Know	

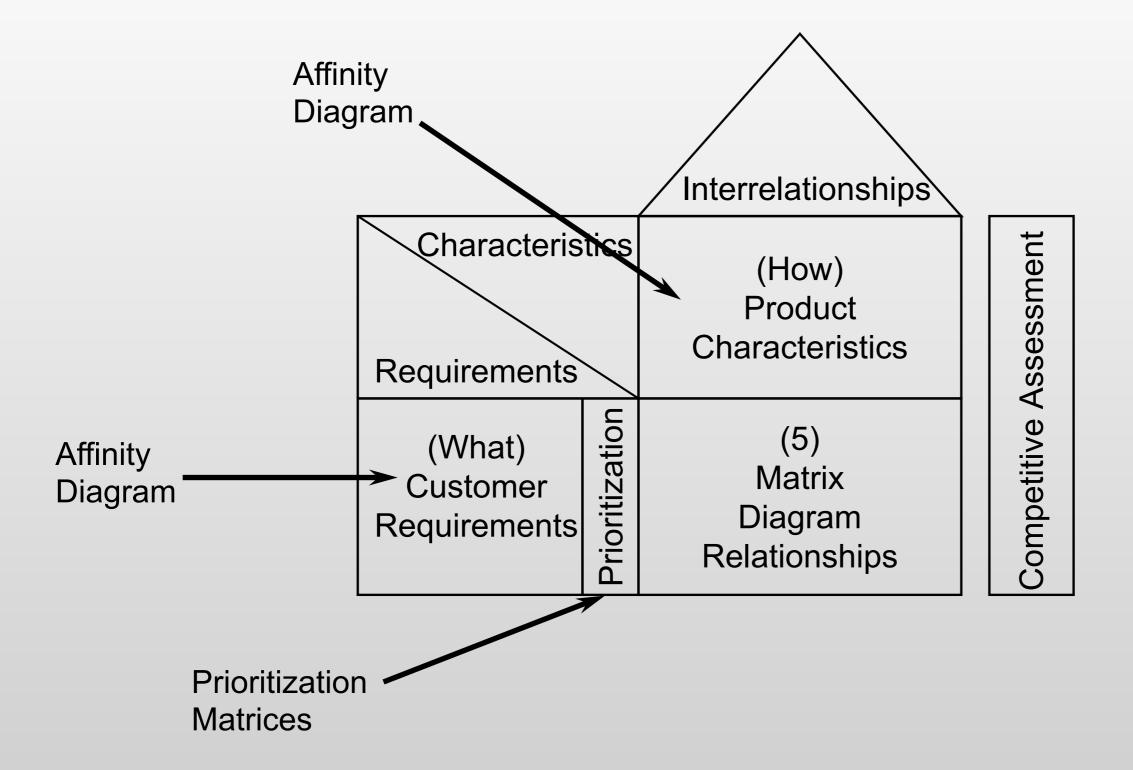
	Boss	Organizer	Staff Person
Travel		*	*
Pick Date		*	
Schedule			
Benefits Discussion			
Dinner			
Follow-up			


Primary Responsibility	*
Secondary Responsibility	->
Needs to Know	


	Boss	Organizer	Staff Person
Travel		*	*
Pick Date		*	
Schedule		*	->
Benefits Discussion	*	->	
Dinner	->		*
Follow-up	*	->	

Primary Responsibility	*
Secondary Responsibility	
Needs to Know	





Affinity Diagram to Organize Ideas for Each Problem

- Affinity Diagram to Organize Ideas for Each Problem
- Tree Diagrams to Assign Tasks

- Affinity Diagram to Organize Ideas for Each Problem
- Tree Diagrams to Assign Tasks
- Prioritization Matrix to Create Task Timeline

- Affinity Diagram to Organize Ideas for Each Problem
- Tree Diagrams to Assign Tasks
- Prioritization Matrix to Create Task Timeline
- Matrix Diagram to Ensure You are Addressing All Needs

- Affinity Diagram to Organize Ideas for Each Problem
- Tree Diagrams to Assign Tasks
- Prioritization Matrix to Create Task Timeline
- Matrix Diagram to Ensure You are Addressing All Needs

• . . .

Summary

- Management and planning tools allow you to:
 - Plan more formally
 - Organize information
 - Deal with qualitative information
 - Show relations between items and issues

Summary

- Management and planning tools allow you to:
 - Plan more formally
 - Organize information
 - Deal with qualitative information
 - Show relations between items and issues

Use Them!!!