

Problem Understanding MCHE 201 – Spring 2019

Dr. Joshua Vaughan

Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

Phases of Design

- 1. Problem Understanding
- 2. Specification Development
- 3. Conceptual Design
- 4. Detail Design
- 5. Production Specification
- 6. Manufacture
- 7. Disposal

What we'll talk about.

The most nonlinear part.

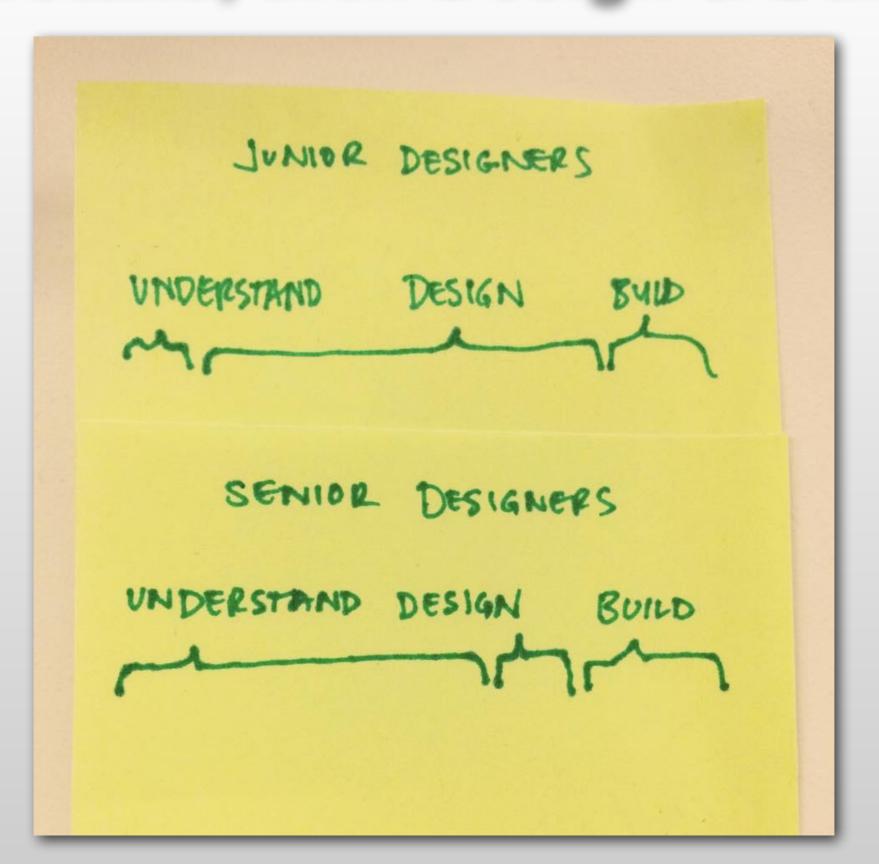
Machine Design

The entire process is iterative.

Phases of Design

- 1. Problem Understanding
- 2. Specification Development
- 3. Conceptual Design
- 4. Detail Design
- 5. Production Specification
- 6. Manufacture
- 7. Disposal

What we'll talk about.


The most nonlinear part.

Machine Design

The entire process is iterative.

Understand, then Design & Build

Problem Understanding

- Who is the customer?
 - end-user?
 - reseller?
 - sales team?
 - **-** ...???

Who are the customers?

- These customers will have some conflicting needs/ demands
- These customers will not do a good job telling you what they really want

Quality Function Deployment

- 1988 Harvard Business Review article
- Developed from study of Kobe Shipyards

Design is a team effort, but how do marketing and engineering talk to each other?

The House of Quality

by John R. Hauser and Don Clausing

Digital Equipment, Hewlett-Packard, AT&T, and ITT are getting started with it. Ford and General Motors use it—at Ford alone there are more than 50 applications. The "house of quality," the basic design tool of the management approach known as quality function deployment (QFD), originated in 1972 at Mitsubishi's Kobe shipyard site. Toyota and its suppliers then developed it in numerous ways. The house of quality has been used successfully by Japanese manufacturers of consumer electronics, home appliances, clothing, integrated circuits, synthetic rubber, construction equipment, and agricultural engines. Japanese designers use it for services like swimming schools and retail outlets and even for planning apartment layouts.

A set of planning and communication routines, quality function deployment focuses and coordinates skills within an organization, first to design, then to manufacture and market goods that customers want to purchase and will continue to purchase. The foundation of the house of quality is the belief that products should be designed to reflect customers' desires and tastes—so marketing people, design engineers, and manufacturing staff must work closely together from the time a product is first conceived.

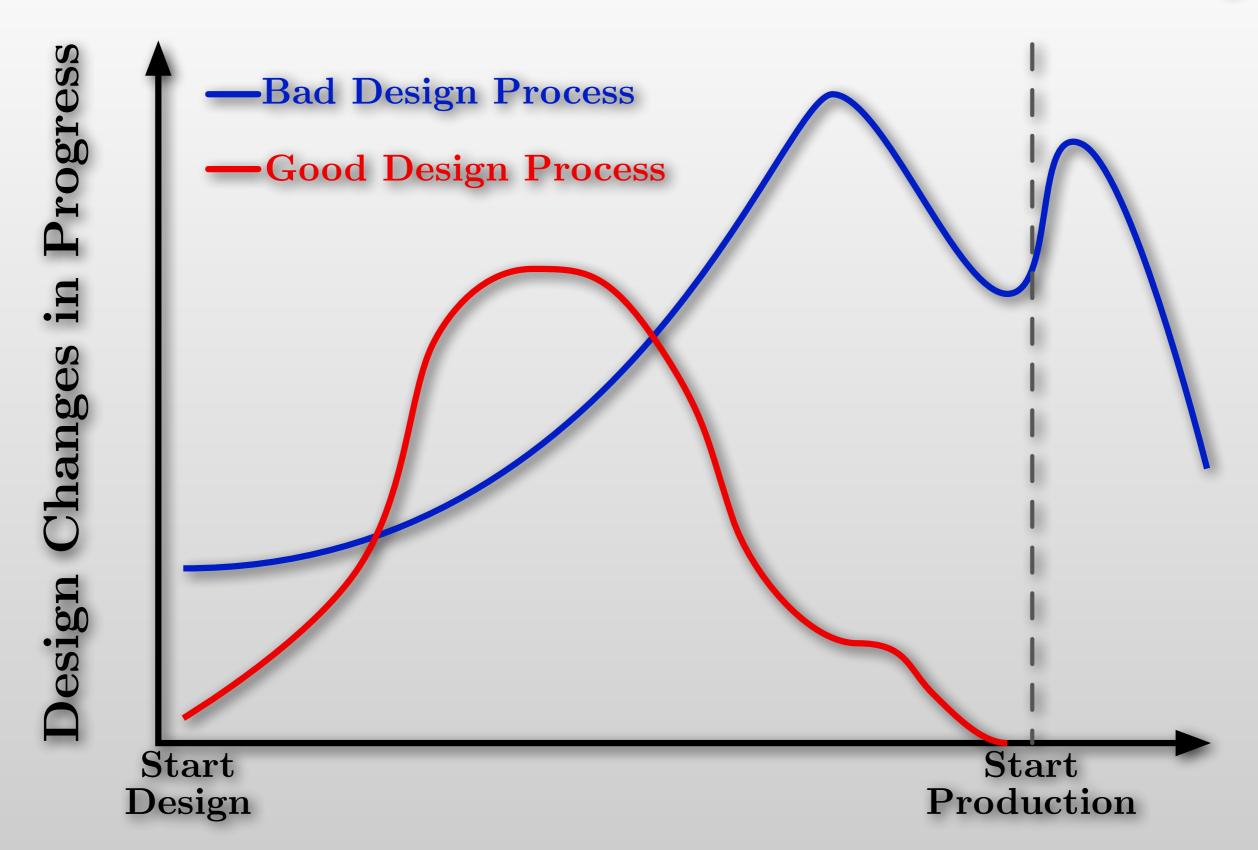
The house of quality is a kind of conceptual map that provides the means for interfunctional planning and communications. People with different

John R. Hauser, at the Harvard Business School as a Marvin Bower fellow during the current academic year, is professor of management science at MIT's Sloan School of Management. He is the author, with Glen L. Urban, of Design & Marketing of New Products (Prentice-Hall, 1980). Don Clausing is Bernard M. Gordon Adjunct Professor of Engineering Innovation and Practice at MIT. Previously he worked for Xerox Corporation. He introduced QFD to Ford and its supplier companies in 1984.

HARVARD BUSINESS REVIEW May-June 1988

Copyright © 1988 by the Presidents and Fellows of Harvard College. All rights reserved.

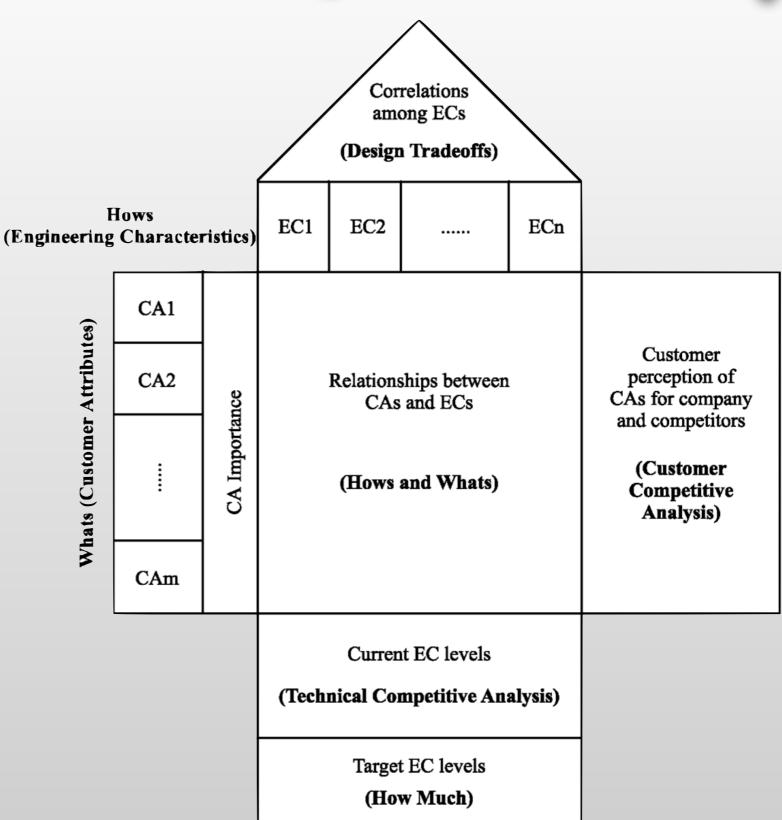
Quality Function Deployment (QFD)



- QFD is a planning tool
 - Customer Needs → Product Dev. Requirements
 - Establishes where time and effort should be focused
 - Establishes where time and effort should not be focused

QFD in not quality control

Design Change Comparison



The House of Quality

 A lot of the utility is completing the tool

 A "living" document

The "middle" of the House of Quality

Measurable characteristics of the design.

Your understanding of what your customer wants.

Engineering Characteristics

Customer Requirements Importance

Relationship Matrix

The "middle" of the House of Quality

Measurable characteristics of the design.

Your understanding of what your customer wants.

Engineering Characteristics

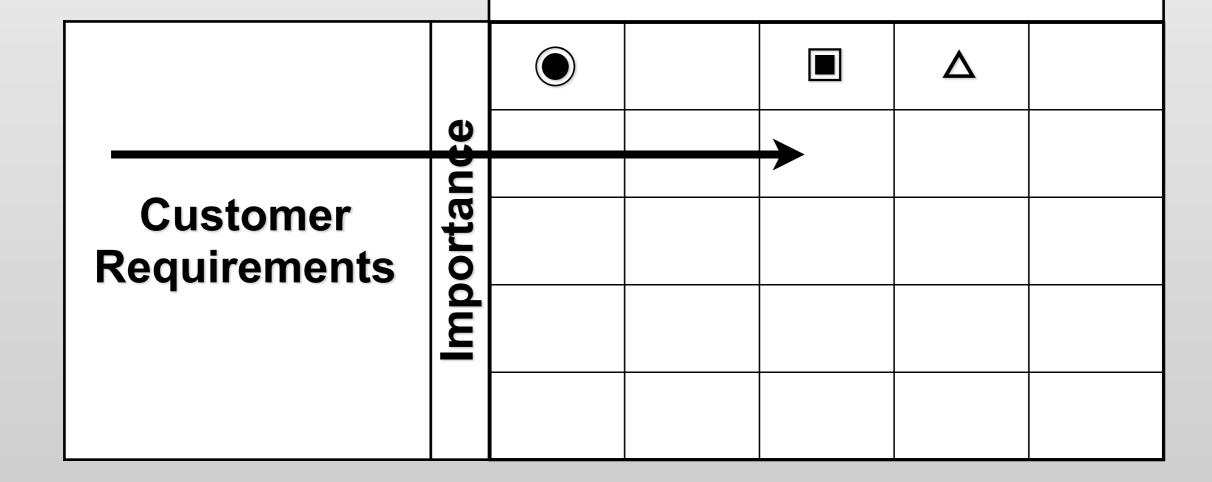
Customer Requirements Importance

How do the measurable characteristics of the design relate to what the customer requirements?

Strong = 9 Medium = 3 Weak = 1		Engineering Characteristics				stics
	_					
		→				
	nce					
Customer Requirements	mportance					
•	lmp					

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics


Customer Requirements

		Δ	
nce			
Importance			
ППР			

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

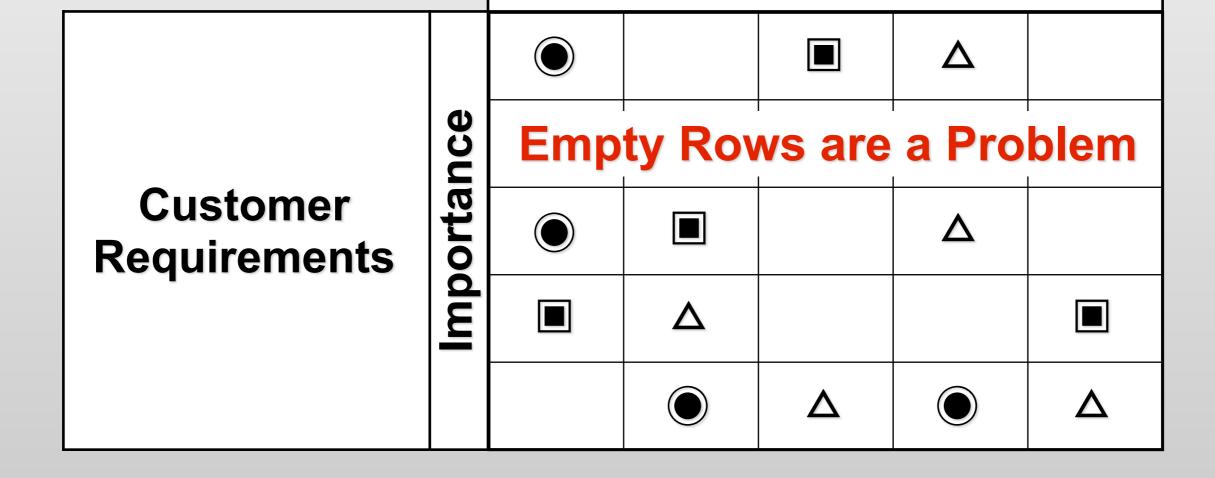
	Strong = 9 Medium = 3 Weak = 1		Engineering Characteristics				stics
		e				Δ	
F	Customer Requirements	Important					

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

				Δ	
	nce				
Customer Requirements	nporta			Δ	
•	lmp	Δ			
			Δ		Δ

Using the House of Quality



- Look for:
 - Blank rows

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

Using the House of Quality

- Look for:
 - Blank rows

- Blank columns

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

				Δ	
	nce				s. are
Customer Requirements	mportance			Δ	y Col Probl
	lmp	Δ			Empt a l
			Δ		

Using the House of Quality

- Look for:
 - Blank rows

- Blank columns —— Addressing a Customer Need that does not exist

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

	5			Δ	
	6				
Customer Requirements	9			Δ	
	2	Δ			
	1		Δ		Δ

Technical Importance(s)

- We can get numbers
- Do not use only the numbers as justification for design decisions!
- Absolute Importance Sum along a column

$$\sum_{\text{col}} \text{(relationship ranking} \times \text{customer importance})$$

Relative Importance – Absolute importance of Eng.
 Char ÷ Sum of absolute importances

$$\frac{\sum_{\text{Char.}} \frac{\text{Absolute Importance}}{\sum_{\text{(Absolute Importances)}}}$$

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

	5				Δ	
	6					
Customer Requirements	9				Δ	
	2		Δ			
	1			Δ		Δ
Absolute Importance		132				

	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

	5				Δ	
	6					
Custo	l q				Δ	
	2		Δ			
	1			Δ		Δ
Absolute	132	92	34	17	25	

sum 300

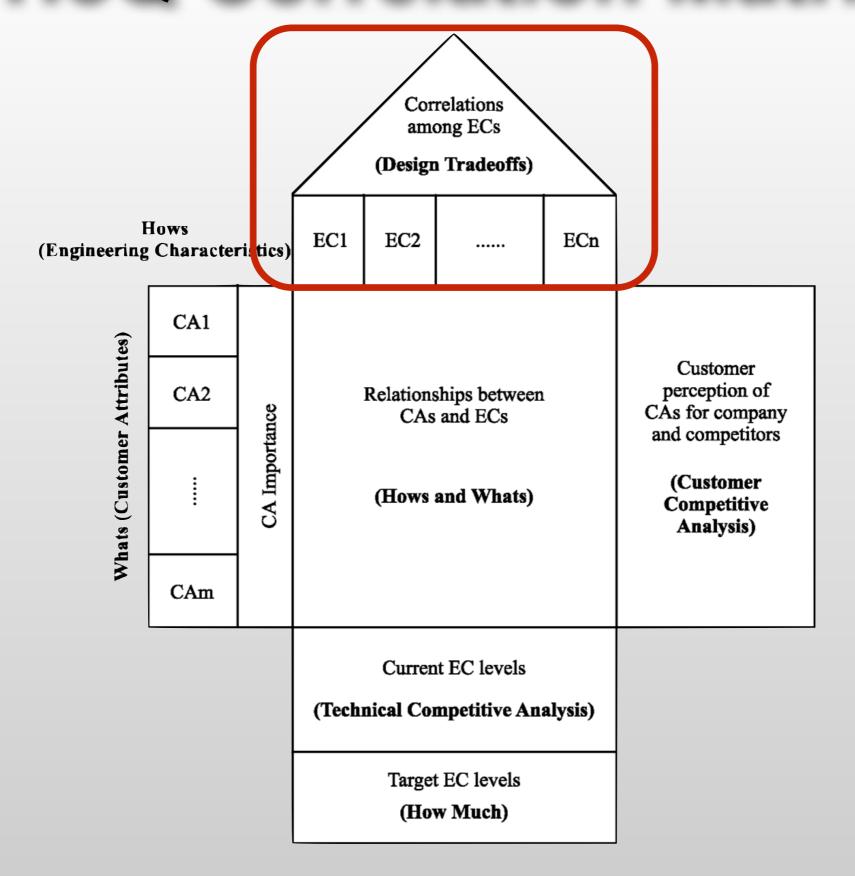
	Strong = 9
	Medium = 3
Δ	Weak = 1

Engineering Characteristics

	5				Δ	
	6					
Customer Requirements	9				Δ	
	2		Δ			
	1			Δ		Δ
Absolute Important	132	92	34	17	25	
Relative Importance	0.44	0.31	0.11	0.06	0.08	

sum 300

HoQ Exercise – For a Spaghetti Tower

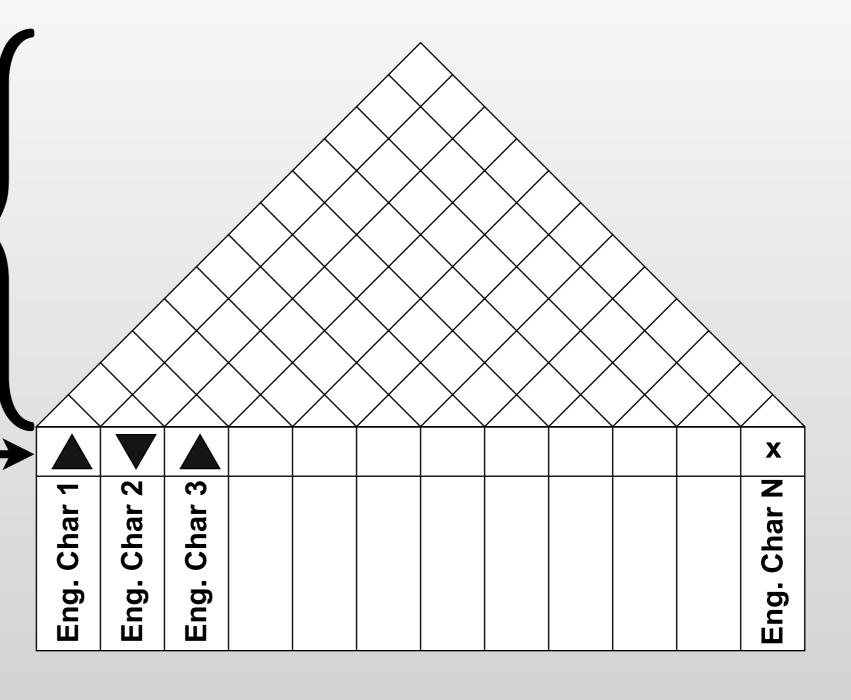


Identify the customer(s), then

- List the:
 - Customer Requirements
 - Engineering Characteristics

The HoQ Correlation Matrix

The HoQ Correlation Matrix


How does improving toward the goal for one char. affect our ability to improve toward the goal for others?

Goal:

Maximize - ▲

Minimize – ▼

Meet Target – x

The HoQ Correlation Matrix

++	Strong	J Pos	s.			<u>/</u>	\rightarrow					
+	Posi						+					
-	Nega	tive			$\langle \ \rangle$	$\langle \ \rangle$	$\langle \ \rangle$	$\langle \ \rangle$				
	Strong	Neg	g.		\times	\times	\times	\times				
				$\langle \ \rangle$	$\langle \ \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$			
											X	
			\times	\times	\times	\times		\times				
		(++)	$\langle \ \rangle$									
		- / -	-	\times								
												X
		2	က									Z
	Char	Char	Char									Char
	S	ပ	ပ									<u>ပ</u>
	Eng.	ng.	ng.									Eng.
	Ш	Ш	Ш									ш

House of Quality Tips/Hints

- Explicitly identify your customers
- List every thing any of your customers care about
- Take each point of that list and expand
 - What does this *really* mean?
 - What does the customer *really* want?
 - ◆ e.g. Reliable?... Uptime of 99.99%? Can survive misuse?
 - ♦ e.g. Easy to use?... Low number of steps? Easily understandable process? Low physical effort needed?
- For each customer requirement, determine what you could measure to determine if you are satisfying it or not. These are (the start of) the Engineering Characteristics.
- Revisit regularly as your understanding of the problem improves!!!

Design Specifications

- Translation of customer requirements into engineering specifications
- Numerical targets or constraints that all possible concepts must meet
- Derived from:
 - Standards
 - Engineering characteristics in House of Quality
 - Engineering analysis

Design Specification Categories

- Geometric
- Kinematics
- Dynamics
- Energy
- Costs
- Material
- Signals
- Safety

- Ergonomics
- Schedules
- Assembly
- Transportation
- Operation
- Quality Control
- Recycling

The Spec. Sheet

			Issued: mm/dd/yy		
		For: PRODUCT NAME	Page x of N		
Changes	D/W	Requirements	Resp.	Source	

The Spec. Sheet

			Issued:	Issued: mm/dd/yy		
		For: PRODUCT NAME	Page x o	f N		
Changes	D/W	Requirements	Resp.	Source		
Date of last change.	Demand or Wish?	Requirements, sorted by category.	Who is responsible?	What is the source of this requirement?		

Spec. Sheet Tips/Hints

- Take every Eng. Char. and define numerical targets
 - Uptime → Uptime > 99.99%
 - Time between required maintenance → Maintenance <1 time per year
 - Number of assembly steps → Number of assembly steps <15
 - Top speed → Top speed > 160mph
 - Max. Acceleration → 0-60mph time < 3s
 - Battery life in hours at 75% load → >5 hour life at 75% load
 - "Average" user time between charges → >1 day between charges in normal use
- Determine if each is a demand or wish/want
- For every demand, are there accompanying specs. that are wishes/wants?
- Revisit regularly as your understanding of the problem improves!!!