

<u>Controls, Robotics,</u> and <u>Automation With</u> Respect for Human Interaction

Dr. Joshua Vaughan

Rougeou 225

joshua.vaughan@louisiana.edu

@Doc_Vaughan

http://www.ucs.louisiana.edu/~jev9637/

C.R.A. W.LAB

Dr. Joshua Vaughan

Rougeou 225 joshua.vaughan@louisiana.edu @Doc_Vaughan http://www.ucs.louisiana.edu/~jev9637/

First, Some Info on Me

- Grew up in Southern Virginia
- Bachelor's from Hampden-Sydney College in May 2002
 - Double Major: Physics and Applied Math

First, Some Info on Me

- Grew up in Southern Virginia
- Bachelor's from Hampden-Sydney College in May 2002
 - Double Major: Physics and Applied Math
 - 4-year starting pitcher

Grad. School

- Graduate School at Georgia Tech
 - Advisor: Dr. William Singhose
 - M.S. in May 2004
 - Thesis: Active and Semi-Active Control to Counter Vehicle Payload Variation
 - Ph.D. in August 2008
 - Thesis: Dynamics and Control of Mobile Cranes

Postdoc

• Tokyo Institute of Technology with Dr. Shigeo Hirose

Postdoc

• Tokyo Institute of Technology with Dr. Shigeo Hirose

10-ton Bridge Crane

Example Multi-mode Crane Oscillation

Walking Robots

Walking Robots

Autonomous Surface Vehicles

- Worked with Swiftships Shipbuilders, LLC
- Special Forces Boat The Anaconda

Remote Control

- Gamepad
- iOS-based remote
 - Joystick
 - Tilt-based
- LEAP Motion Controller

LEAP Motion Control

Just a little while later...

2016 Maritime RobotX Challenge

Custom Kit from SparkFun

- Core is pyboard, a ARM-based microcontroller
- Write code in MicroPython
- •~\$120
- •http://sfe.io/w135021

Final Project Kit

- Supported by UL Lafayette
 Educational
 Grant and STEP
 Grants
 - Better motors and driver
 - Solenoid
 - Distance sensor
 - Power Supply
 - Connectors for MCHE201 Track
- More this term!

Course Tools/Resources

- GitHub Repository https://github.com/
 DocVaughan/MCHE201---Intro-to-Eng-Design
 - Example code
 - Report template
- Tons of info on class page
 - Links to pictures from past semesters
 - Video lectures on several topics (with more to come!)
 - Links to external sources of more information

ME2110 at Georgia TEch

MCHE201 – Spring 2015

An Invitation

- What: MCHE201 Final Robotics Contest
- When: Thursday, April 19th, 5pm ~8:30pm
- Where: Blackham Coliseum

Then, come win the contest this fall!!!

CanSat/ARLISS

- A Rocket Launch for International Student Satellites
- Held in fall in Black Rock, NV
- Two classes of competition
- Many more Japanese than American teams

The Black Rock Desert

The Launch

CanSat Class

- Size and weight of 12oz.
 beverage can
- Launched to ≈12,000 ft.
- Options:
 - Mission Do something cool with the payload
 - Comeback Autonomously navigate to target location

Open Class Comeback

- Must fit in 146mm diameter, 240mm deep cylinder and be less than 1050g
- Autonomously navigate to target
- Launched to ≈12,000 ft.

Open Class Comeback

- Must fit in 146mm diameter, 240mm deep cylinder and be less than 1050g
- Autonomously navigate to target
- Launched to ≈12,000 ft.

Open Class Examples

Open Class Examples

Open Class Examples

UL Lafayette's First-Ever Team

UL Lafayette's 2015 Team

UL Lafayette's 2015 Team

For High School Teams

- CanSAT-sized Mission Class entry
- Same microcontroller as MCHE201 kit
- Possible/likely inclusions:
 - Accelerometers
 - Barometric Pressure/Altitude
 - GPS
 - Camera

2015 Launches

- Launch 1 https://vimeo.com/docvaughan/ arliss2015launch1
- Launch 2 https://vimeo.com/docvaughan/ arliss2015launch2

Testing on the desert

- Pre-launch https://vimeo.com/docvaughan/ 2015prelaunchtesting
- Post-launch https://vimeo.com/docvaughan/ postlaunchtest2015

flickr Albums from Past Teams

- 2014 https://flic.kr/s/aHsk2LRZYC
- 2015 https://flic.kr/s/aHsk6Xt1hc

- •2016 https://flic.kr/s/aHskC3FrAj
- 2017 https://flic.kr/s/aHskQREGFS

Thank You.